首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Oogenesis in the glossiphoniid leech Glossiphonia heteroclita (Hirudinea, Rhynchobdellida) is nutrimental, i.e., the growing oocyte is supported by specialized germline cells, the nurse cells. The main function of the nurse cells is to provide oocytes with cell organelles and RNAs (mainly rRNA). However, in studied leech species, irrespective of the nutrimental mode of oogenesis, the germinal vesicle (GV = oocyte nucleus) seems to be very active in rRNA production. As shown in the present study, during early previtellogenesis in the GV the meiotic chromosomes and prominent primary nucleoli occur. In late previtellogenesis the chromosomes condense and occupy a limited space of nucleoplasm in close vicinity to primary nucleolus, forming a karyosome. At the onset of vitellogenesis several prominent extrachromosomal DNA bodies appear in close association with the karyosome. At the same time, the primary nucleolus is no longer visible in the GV. As vitellogenesis proceeds the extrachromosomal DNA bodies undergo fragmentation and numerous spherical, RNA- and AgNOR-positive inclusions occur in the nucleoplasm. They are regarded as multiple nucleoli. Finally, in late oogenesis numerous accessory nuclei are formed in close proximity to the nuclear envelope. They usually contain one dense body, morphologically similar to multiple nucleoli. The amplification of rDNA genes, the occurrence of extrachromosomal DNA bodies, as well as the presence of multiple nucleoli and accessory nuclei are described for the first time in the phylum Annelida.  相似文献   

3.
4.
Amplification of the genes coding for ribosomal RNA oocurs in the oocytes of a wide variety of organisms. In oocytes of various species of crickets (Orthoptera: Gryllidae) the amplified DNA is contained in a large extrachromosomal DNA body. Multiple nucleoli form about the periphery of the DNA body during the diplotene stage of meiosis I. In contrast to the general pattern of orthopteran oocytes, oocytes of the cockroach Blattella germanica demonstrate a single large nucleolus instead of many nucleoli. In order to determine whether the genes coding for rRNA are amplified in the oocytes of B. germanica, the relative amount of rDNA in oocytes was compared with the rDNA content of spermatocytes and somatic cells. An extrachromosomal DNA body similar to that present in crickets is not present in B. germanica. A satellite DNA band which contains nucleotide sequences complementary to rRNA accounts for approximately 3-5% of the total DNA in somatic and in male and female gametogenic tissues. Female cells contain approximately twice as much rDNA as do male cells. An XX-XO sex-determining mechanism is operative in B. germanica. In situ hybridization with rRNA indicates that the nucleolar organizer is located on one end of the X chromosome and that oocytes do not contain more than twice the amount of rDNA found in spermato cytes. The data indicate that rDNA is not amplified in the uninucleolate oocyte of B germanica.  相似文献   

5.
6.
7.
Z P Za?chikova  M N Gruzova 《Tsitologiia》1975,17(11):1253-1262
The light and electron microscope and autoradiographic studies (H3-uridin incorporation) were carried out on the trophocyte nuclei of imago polytrophic ovarioles of Chrysopa perla (Neuroptera), from the trophocyte differentiation up to their degeneration. Like the oocytes, one of the seven nurse cells o every ovariole chamber contains extrachromosomal DNA bodies. This nurse cell is formed during differential mitoses in the germarium as one of two prooocytes. In contrast to extrachromosomal DNA of oocytes the trophocyte DNA bodies are less active structures. Several (2--4) complex nucleoli develop in the trophocytes of Chrysopa in the early stages of oogenesis. They consist of three main components: the chromatin mass, fibrillar bodies and granular strands. Such nucleoli grow, through increasing in number of fibrillar bodies and granular strands. They are most developed by the start of the vitellogenesis. At the middle vitellogenesis the general nucleolar structure modify due to the beginning of trophocyte degeneration. The consecutive stages of nuclear degeneration are described. The trophocyte nucleoli synthesize RNA still in germarium. The most intensive RNA synthesis is observed at the beginning of the vitellogenesis to decrease by the beginning of trophocyte degeneration.  相似文献   

8.
On the basis of light, autoradiographic (uridine-3H incorporation) and electron microscopic investigation changes of nuclear structures were examined during the oogenesis in Chrysopa perla L. — In early meiotic prophase the oocyte nuclei were found to contain a large body of extrachromosomal DNA. In certain cases the latter splits up into several DNA clumps giving rise to a few (4–7) primary nucleoli, 3–5 in diameter. The primary nucleoli consist of densely packed fibrils 50–100 Å thick. They contain no granular component and are inactive in RNA synthesis. — At the beginning of large growth the extrachromosomal DNA bodies disappear and numerous electron-dense clumps, 0,5–1 in diameter, appear in the nucleus. Instead of the primary nucleoli, the nucleus now contains a great number of ring nucleoli about 0,5–1 in diameter with a granular component (granules are 150 Å). The space between them is filled up with nucleolar strands running from the surface of the ring nucleoli. — At the stage ring nucleoli of uridine–3 H incorporation into the oocyte nucleus begins. — During later previtellogenesis and at the beginning of vitellogenesis the ring nucleoli disappear and the nucleus is filled with the network of nucleolar strands. Among them there are specific complexes. These consist of electron dense masses, of granular clusters (granules 500 Å in diameter) and large fibrillar electron light bodies. At this stage the nucleus takes the most active part in RNA synthesis. — The process of karyosphere capsule formation was studied by electron microscopy. The capsule was found to be of fibrillar nature; its structure is very peculiar and unlike any known membrane components of the cell. On the basis of cytochemical evidences the characteristics of the capsule are given. — The development of a powerful nucleolar apparatus based on the extrachromosomal DNA and a possible role of the synaptonemal complex and extrachromosomal DNA in formation of the karyosphere capsule is discussed.  相似文献   

9.
10.
11.
12.
13.
We have used biotinylated rDNA probes to localize by in situ hybridization the extrachromosomal genes for ribosomal RNA in the slime mold Physarum polycephalum. We established conditions that allow for highly specific hybridization at the ultrastructural level and determined that the 60-kb palindromic rDNA molecules are confined to the nucleolus in interphase. Our study definitively locates these extrachromosomal genes in mitosis in the form of thin DNA fibers contained within nucleolar remnants. We further show that these rDNA minichromosomes do not condense and that they segregate as entities independent of the condensed chromosomal DNA. In telophase, these minichromosomes migrate from the poles toward the equatorial region of the nucleus in a direction opposite that of the chromosomes. Our results illustrate the discontinuous nature of the nucleolar organizing region in Physarum.  相似文献   

14.
Isolated nucleoli, nucleolar chromatin, and nucleolar DNA were used as templates for DNA synthesis in appropriately supplemented systems in which RNA polymerases other than RNA polymerase I were blocked by alpha-amanitin. With the aid of nucleotide analysis, DNA-RNA hybridization, and homochromatography fingerprinting, it was found that isolated nucleoli and nucleolar chromatin serve primarily as templates for synthesis of rRNA. However, the products formed with purified nucleolar DNA as a template do not contain the specific rRNA oligonucleotides nor are they appreciably hybridized to the rDNA region on cesium chloride gradients. These results indicate that whole nucleoli and nucleolar chromatin contain control mechanisms that restrict readouts by RNA polymerase I of nucleolar DNA to rDNA.  相似文献   

15.
The ovary of Polystoechotes punctatus consists of several ovarioles of meroistic-polytrophic type. Histological, histochemical and ultrastructural studies revealed that the extrachromosomal amplification of rDNA takes place in the oocyte nucleus. Prior to previtellogenic growth the oocyte nucleus contains the chromosomes of meiotic prophase and a condensed extra DNA body. Initial split of extrachromosomal DNA material into several fragments coincides with the appearance of a spherical, fine granular body (referred to as primary nucleolus). Its gradual fragmentation accompanied by further dispersion of amplified DNA results in the formation of a growing number of multiple nucleoli. Until mid previtellogenesis each multiple nucleolus contains detectable amount of rDNA. In the advanced stages of previtellogenesis rDNA can hardly be visualized within the multiple nucleoli, while chromosomes form a few dense aggregates randomly disposed in the karyoplasm. At the onset of vitellogenesis the chromosomes assemble to form a karyosome. In its close vicinity DNA-positive material reaggregates. Multiple nucleoli are either found on the periphery of this aggregation or merge within it. At the final stages of vitellogenesis the number of multiple nucleoli significantly decreases.  相似文献   

16.
17.
18.
In metaphase preparations from leucocytes of the toad, Bufo marinus, conspicuous secondary constrictions are present in the number 7 pair of chromosomes. These constrictions were considered to be the nucleolar organizers since they were associated with nucleoli during prophase. In 35 out of 60 individuals taken from natural populations, the homologous nucleolar organizers produced two equal-sized nucleoli and secondary constrictions (Group I animals). Pour animals (Group II) had only one very large secondary constriction in the majority of their metaphase preparations and an abnormally high frequency of cells containing one nucleolus. The remaining 21 animals (Group III) had unequal-sized constrictions in most of their metaphases but were more variable than the individuals of Groups I or II since they also had metaphases with two equal constrictions or only one constriction.The DNA from individuals of each group was hybridized with radioactive ribosomal RNA in order to correlate the size of nucleoli and constrictions with the amount of DNA (rDNA) homologous to ribosomal RNA. The two animals of Group II which were studied contained 0.056% of their genome homologous to ribosomal RNA a value considerably higher than those found for any of the animals of Groups I or III. These high values for rDNA coupled with the morphological appearance of the nucleolar homologues suggested a duplication of the nucleolar organizer in the homologue with the long constriction. The amount of rDNA in animals of Group I and III varied between 0.025 and 0.048% of the genome. Although the animals with unequal-sized constrictions (Group III) had generally lower contents of rDNA than those with equal-sized constrictions (Group I), the values overlapped between the two groups. Further evidence which correlates the size of nucleoli with the number of ribosomal RNA genes comes from studies with a small nucleolar mutant of the Mexican axolotl (Ambystoma mexicanum). Animals homozygous for this deletion were found to contain only 55% of the complement of rDNA present in the wild type. It is concluded that partial deletions and duplications of the nucleolar organizer as well as highly variable contents of rDNA are common in the genome of these amphibians.Presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Biology Department, University of Rochester.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号