首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cichlid fishes in the East African Great Lakes are a prime model system for the study of adaptive radiation. Therefore, the availability of an elaborate phylogenetic framework is an important prerequisite. Previous phylogenetic hypotheses on East African cichlids are mainly based on mitochondrial and/or fragment‐based markers, and, to date, no taxon‐rich phylogeny exists that is based on multilocus DNA sequence data. Here, we present the design of an extensive new primer set (24 nuclear makers) for East African cichlids that will be used for multilocus phylogenetic analyses in the future. The primers are designed to work for both Sanger sequencing and next‐generation sequencing with the 454 technology. As a proof of principle, we validate these primers in a phylogenetically representative set of 16 cichlid species from Lake Tanganyika and main river systems in the area and provide a basic evaluation of the markers with respect to marker length and diversity indices.  相似文献   

2.
Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome‐wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ~ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic‐benthic axis in both radiations.  相似文献   

3.
The lower jaw (LJ) provides an ideal trophic phenotype to compare rates and patterns of macroevolution among cichlid radiations. Using a novel phylogeny of four genes (ND2, dlx2, mitfb, and s7), we examined the evolutionary relationships among two of the most phylogenetically disparate cichlid radiations: (i) the Central America Heroines; and (ii) the East African Lake Malawi flock. To quantify jaw morphology, we measured two LJ lever systems in approximately 40 species from each lineage. Using geologic calibrations, we generated a chronogram for both groups and examined the rates of jaw evolution in the two radiations. The most rapidly evolving components of the LJ differed between the two radiations. However, the Lake Malawi flock exhibited a much faster rate of evolution in several components of the LJ. This rapid rate of divergence is consistent with natural selection, promoting unparalleled trophic diversification in Lake Malawi cichlids.  相似文献   

4.
5.
Adaptive radiations are characterized by adaptive diversification intertwined with rapid speciation within a lineage resulting in many ecologically specialized, phenotypically diverse species. It has been proposed that adaptive radiations can originate from ancestral lineages with pronounced phenotypic plasticity in adaptive traits, facilitating ecologically driven phenotypic diversification that is ultimately fixed through genetic assimilation of gene regulatory regions. This study aimed to investigate how phenotypic plasticity is reflected in gene expression patterns in the trophic apparatus of several lineages of East African cichlid fishes, and whether the observed patterns support genetic assimilation. This investigation used a split brood experimental design to compare adaptive plasticity in species from within and outside of adaptive radiations. The plastic response was induced in the crushing pharyngeal jaws through feeding individuals either a hard or soft diet. We find that nonradiating, basal lineages show higher levels of adaptive morphological plasticity than the derived, radiated lineages, suggesting that these differences have become partially genetically fixed during the formation of the adaptive radiations. Two candidate genes that may have undergone genetic assimilation, gif and alas1, were identified, in addition to alterations in the wiring of LPJ patterning networks. Taken together, our results suggest that genetic assimilation may have dampened the inducibility of plasticity related genes during the adaptive radiations of East African cichlids, flattening the reaction norms and canalizing their feeding phenotypes, driving adaptation to progressively more narrow ecological niches.  相似文献   

6.
With the realization that much of the biological diversity on Earth has been generated by discrete evolutionary radiations, there has been a rapid increase in research into the biotic (key innovations) and abiotic (key environments) circumstances in which such radiations took place. Here we focus on the potential importance of population genetic structure and trait genetic architecture in explaining radiations. We propose a verbal model describing the stages of an evolutionary radiation: first invading a suitable adaptive zone and expanding both spatially and ecologically through this zone; secondly, diverging genetically into numerous distinct populations; and, finally, speciating. There are numerous examples of the first stage; the difficulty, however, is explaining how genetic diversification can take place from the establishment of a, presumably, genetically depauperate population in a new adaptive zone. We explore the potential roles of epigenetics and transposable elements (TEs), of neutral process such as genetic drift in combination with trait genetic architecture, of gene flow limitation through isolation by distance (IBD), isolation by ecology and isolation by colonization, the possible role of intra‐specific competition, and that of admixture and hybridization in increasing the genetic diversity of the founding populations. We show that many of the predictions of this model are corroborated. Most radiations occur in complex adaptive zones, which facilitate the establishment of many small populations exposed to genetic drift and divergent selection. We also show that many radiations (especially those resulting from long‐distance dispersal) were established by polyploid lineages, and that many radiating lineages have small genome sizes. However, there are several other predictions which are not (yet) possible to test: that epigenetics has played a role in radiations, that radiations occur more frequently in clades with small gene flow distances, or that the ancestors of radiations had large fundamental niches. At least some of these may be testable in the future as more genome and epigenome data become available. The implication of this model is that many radiations may be hard polytomies because the genetic divergence leading to speciation happens within a very short time, and that the divergence history may be further obscured by hybridization. Furthermore, it suggests that only lineages with the appropriate genetic architecture will be able to radiate, and that such a radiation will happen in a meta‐population environment. Understanding the genetic architecture of a lineage may be an essential part of accounting for why some lineages radiate, and some do not.  相似文献   

7.
Many sexually selected traits in male fishes are controlled by testosterone. Directional selection for male ornaments could theoretically increase male testosterone levels over evolutionary timescales, and when genetically correlated, female testosterone levels as well. Because of the negative fitness consequences of high testosterone, it is plausible that female choice for sexually selected traits in males results in decreased female reproductive fitness. I used comparative analysis to examine the association between male peak testosterone expression and sexually selected ornaments. I also tested for genetic correlation between male and female androgen levels. The presence of sexually selected traits in males was significantly correlated with increased peak androgen levels in males as well as females, and female testosterone levels were significantly correlated with male peak testosterone titers, although the slope was only marginally <1. This suggests that selection to decouple high male and female testosterone levels is either weak or otherwise ineffective.  相似文献   

8.
9.
The evolution of static allometry in sexually selected traits   总被引:3,自引:0,他引:3  
Although it has been the subject of verbal theory since Darwin, the evolution of morphological trait allometries remains poorly understood, especially in the context of sexual selection. Here we present an allocation trade-off model that predicts the optimal pattern of allometry under different selective regimes. We derive a general solution that has a simple and intuitive interpretation and use it to investigate several examples of fitness functions. Verbal arguments have suggested cost or benefit scenarios under which sexual selection on signal or weapon traits may favor larger individuals with disproportionately larger traits (i.e., positive allometry). However, our results suggest that this is necessarily true only under a precisely specified set of conditions: positive allometry will evolve when the marginal fitness gains from an increase in relative trait size are greater for large individuals than for small ones. Thus, the optimal allometric pattern depends on the precise nature of net selection, and simple examples readily yield isometry, positive or negative allometry, or polymorphisms corresponding to sigmoidal scaling. The variety of allometric patterns predicted by our model is consistent with the diversity of patterns observed in empirical studies on the allometries of sexually selected traits. More generally, our findings highlight the difficulty of inferring complex underlying processes from simple emergent patterns.  相似文献   

10.
Adaptive radiations are major contributors to species diversity. Although the underlying mechanisms of adaptive radiations, specialization and trade‐offs, are relatively well understood, the tempo and repeatability of adaptive radiations remain elusive. Ecological specialization can occur through the expansion into novel niches or through partitioning of an existing niche. To test how the mode of resource specialization affects the tempo and repeatability of adaptive radiations, we selected replicate bacterial populations in environments that promoted the evolution of diversity either through niche expansion or through niche partitioning, and in a third low‐quality single‐resource environment, in which diversity was not expected to evolve. Colony size diversity evolved equally fast in environments that provided ecological opportunities regardless of the mode of resource specialization. In the low‐quality environments, diversity did not consistently evolve. We observed the largest fitness improvement in the low‐quality environment and the smallest the glucose‐limited environment. We did not observe a change in the rate of evolutionary change in either trait or environment, suggesting that the pool of beneficial mutations was not exhausted. Overall, the mode of resource specialization did not affect the tempo or repeatability of adaptive radiations. These results demonstrate the limitations of eco‐evolutionary feedbacks to affect evolutionary outcomes.  相似文献   

11.
The spectacularly diverse cichlid fish species flocks of the East African Rift Lakes have elicited much debate on the potential evolutionary mechanisms responsible for the origin of these adaptive radiations. An historical perspective on population structure may offer insights into the processes driving population differentiation and possibly speciation. Here, we examine mitochondrial DNA (mtDNA) sequence variation in two endemic species of rock-dwelling cichlids, Simochromis babaulti and S. diagramma , from Lake Tanganyika. Phylogeographic analyses were used to infer what factors might have been important in the genetic structuring of Simochromis populations. Patterns of mtDNA differentiation in Simochromis were compared to those of other rock-dwelling cichlids to distinguish between competing hypotheses concerning the processes underlying their evolution. In striking contrast to previous findings, populations of Simochromis , even those separated by up to 300 km, were found to share mitochondrial DNA haplotypes. There is no correspondence between mtDNA genealogies and the geographical distribution of populations. Only S. babaulti , but not S. diagramma was found to have a significant association between genetic and geographical distance. These phylogeographic patterns suggest that the evolutionary effects of abiotic and biotic factors shaping population genetic structure may differ substantially even among closely related species of rock-dwelling cichlids. Physical events and barriers to gene flow that are believed to have had a major impact on the geographical distribution and intralacustrine speciation of Tropheus do not seem to have equally strongly affected its close relative Simochromis . These findings emphasize that no single mechanism can be responsible for the formation of population structure, speciation, and the adaptive radiation of all cichlid fishes.  相似文献   

12.
Large-scale, spatially explicit models of adaptive radiation suggest that the spatial genetic structure within a species sampled early in the evolutionary history of an adaptive radiation might be higher than the genetic differentiation between different species formed during the same radiation over all locations. Here we test this hypothesis with a spatial population genetic analysis of Hypoplectrus coral reef fishes (Serranidae), one of the few potential cases of a recent adaptive radiation documented in the marine realm. Microsatellite analyses of Hypoplectrus puella (barred hamlet) and Hypoplectrus nigricans (black hamlet) from Belize, Panama and Barbados validate the population genetic predictions at the regional scale for H. nigricans despite the potential for high levels of gene flow between populations resulting from the 3-week planktonic larval phase of Hypoplectrus . The results are different for H. puella , which is characterized by significantly lower levels of spatial genetic structure than H. nigricans . An extensive field survey of Hypoplectrus population densities complemented by individual-based simulations shows that the higher abundance and more continuous distribution of H. puella could account for the reduced spatial genetic structure within this species. The genetic and demographic data are also consistent with the hypothesis that H. puella might represent the ancestral form of the Hypoplectrus radiation, and that H. nigricans might have evolved repeatedly from H. puella through ecological speciation. Altogether, spatial genetic analysis within and between Hypoplectrus species indicate that local processes can operate at a regional scale within recent marine adaptive radiations.  相似文献   

13.
The uneven distribution of diversity is a conspicuous phenomenon across the tree of life. Ecological opportunity is a prominent catalyst of adaptive radiation and therefore may alter patterns of diversification. We evaluated the distribution of shifts in diversification rates across the cichlid phylogeny and the distribution of major clades across phylogenetic space. We also tested if ecological opportunity influenced these patterns. Colonization‐associated ecological opportunity altered the tempo and mode of diversification during the adaptive radiation of cichlid fishes. Clades that arose following colonization events diversified faster than other clades. Speciation rate shifts were nonrandomly distributed across the phylogeny such that they were disproportionally concentrated around nodes that corresponded with colonization events (i.e., of continents, river basins, or lakes). Young clades tend to expand faster than older clades; however, colonization‐associated ecological opportunity accentuated this pattern. There was an interaction between clade age and ecological opportunity that explained the trajectory of clades through phylogenetic space over time. Our results indicate that ecological opportunities afforded by continental and ecosystem‐scale colonization events explain the dramatic speciation rate heterogeneity and phylogenetic imbalance that arose during the evolutionary history of cichlid fishes.  相似文献   

14.
Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick‐lipped) and Pundamilia nyererei (thin‐lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small‐to‐moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive‐effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick‐lipped ecomorph is the result of selection on numerous loci distributed throughout the genome.  相似文献   

15.
Here we review how adaptive traits contribute to the emergence and maintenance of species richness gradients through their influence on demographic and diversification processes. We start by reviewing how demographic dynamics change along species richness gradients. Empirical studies show that geographical clines in population parameters and measures of demographic variability are frequent along latitudinal and altitudinal gradients. Demographic variability often increases at the extremes of regional species richness gradients and contributes to shape these gradients. Available studies suggest that adaptive traits significantly influence demographic dynamics, and set the limits of species distributions. Traits related to thermal tolerance, resource use, phenology and dispersal seem to play a significant role. For many traits affecting demography and/or diversification processes, complex mechanistic approaches linking genotype, phenotype and fitness are becoming progressively available. In several taxa, species can be distributed along adaptive trait continuums, i.e. a main axis accounting for the bulk of inter‐specific variation in some correlated adaptive traits. It is shown that adaptive trait continuums can provide useful mechanistic frameworks to explain demographic dynamics and diversification in species richness gradients. Finally, we review the existence of sequences of adaptive traits in phylogenies, the interactions of adaptive traits and community context, the clinal variation of traits across geographical gradients, and the role of adaptive traits in determining the history of dispersal and diversification of clades. Overall, we show that the study of demographic and evolutionary mechanisms that shape species richness gradients clearly requires the explicit consideration of adaptive traits. To conclude, future research lines and trends in the field are briefly outlined.  相似文献   

16.
17.
Color patterns are often linked to the behavioral and morphological characteristics of an animal, contributing to the effectiveness of such patterns as antipredatory strategies. Species‐rich adaptive radiations, such as the freshwater fish family Cichlidae, provide an exciting opportunity to study trait correlations at a macroevolutionary scale. Cichlids are also well known for their diversity and repeated evolution of color patterns and body morphology. To study the evolutionary dynamics between color patterns and body morphology, we used an extensive dataset of 461 species. A phylogenetic supertree of these species shows that stripe patterns evolved ~70 times independently and were lost again ~30 times. Moreover, stripe patterns show strong signs of correlated evolution with body elongation, suggesting that the stripes’ effectiveness as antipredatory strategy might differ depending on the body shape. Using pedigree‐based analyses, we show that stripes and body elongation segregate independently, indicating that the two traits are not genetically linked. Their correlation in nature is therefore likely maintained by correlational selection. Lastly, by performing a mate preference assay using a striped CRISPR‐Cas9 mutant of a nonstriped species, we show that females do not differentiate between striped CRISPR mutant males and nonstriped wild‐type males, suggesting that these patterns might be less important for species recognition and mate choice. In summary, our study suggests that the massive rates of repeated evolution of stripe patterns are shaped by correlational selection with body elongation, but not by sexual selection.  相似文献   

18.
Most studies on eco‐evolutionary feedbacks concern the influence of abiotic factors, or predator–prey and host–parasite interactions, while studies involving sexual interactions are lagging behind. This is at odds with the potential of these interactions to engage in such processes. Indeed, there is now ample evidence that sexual selection is affected by ecological change and that sexually selected traits can evolve rapidly, which may modify the ecological context of populations, and thus the selection pressures they will be exposed to. Here we review evidence for such eco‐evolutionary processes. We discuss examples of eco‐evolutionary change in an attempt to understand the challenges related with identifying and characterizing such processes. In particular, we focus on the challenges associated with accurately identifying the components of the feedback as well as their causal relation. Finally, we evaluate scenarios where understanding eco‐evolutionary feedbacks of sexual selection may help us appreciate the effects of sexual selection in shaping evolutionary processes.  相似文献   

19.
In the African cichlid species flocks several corresponding ecotypes and species communities have evolved independently in each of the lakes. These flocks can be viewed as reiterations of a process, induced by the same type of external event (the formation of a lake) and seeded by the same group of organisms, equipped with the same innovative potential. The East African lakes differ in their ages, so that different stages of adaptive radiation of a single group of fishes can be studied simultaneously. This review combines findings on various African cichlid species flocks and derives a generalized model of cichlid adaptive radiation. The model constitutes four stages, defined by the most influential habitat characteristics and interactions among members of the species community at each phase. It is an attempt to provide an explicit hypothesis for a dynamic evolutionary process, as a basis to future studies.  相似文献   

20.
The independent evolution of similar morphologies has long been a subject of considerable interest to biologists. Does phenotypic convergence reflect the primacy of natural selection, or does development set the course of evolution by channelling variation in certain directions? Here, we examine the ontogenetic origins of relative limb length variation among Anolis lizard habitat specialists to address whether convergent phenotypes have arisen through convergent developmental trajectories. Despite the numerous developmental processes that could potentially contribute to variation in adult limb length, our analyses reveal that, in Anolis lizards, such variation is repeatedly the result of changes occurring very early in development, prior to formation of the cartilaginous long bone anlagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号