首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Technique for starvation of Escherichia coli of thymine.   总被引:7,自引:7,他引:0  
  相似文献   

2.
Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435-1446. 1966.-During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation.  相似文献   

3.
4.
5.
6.
To probe the mechanisms of mutagenesis induced by thymine starvation, we examined the mutational specificity of this treatment in strains of Escherichia coli that are wild type (Ung+) or deficient in uracil-DNA-glycosylase (Ung-). An analysis of Ung+ his-4 (ochre) revertants revealed that the majority of induced DNA base substitution events were A:T----G:C transitions. However, characterization of lacI nonsense mutations induced by thymine starvation demonstrated that G:C----A:T transitions and all four possible transversions also occurred. In addition, thymineless episodes led to reversion of the trpE9777 frameshift allele. Although the defect in uracil-DNA-glycosylase did not appear to affect the frequency of total mutations induced in lacI by thymine deprivation, the frequency of nonsense mutations was reduced by 30%, and the spectrum of nonsense mutations was altered. Furthermore, the reversion of trpE9777 was decreased by 90% in the Ung- strain. These findings demonstrate that in E. coli, thymine starvation can induce frameshift mutations and all types of base substitutions. The analysis of mutational specificity indicates that more than a single mechanism is involved in the induction of mutation by thymine depletion. We suggest that deoxyribonucleoside triphosphate pool imbalances, the removal of uracil incorporated into DNA during thymine starvation, and the induction of recA-dependent DNA repair functions all may play a role in thymineless mutagenesis.  相似文献   

7.
8.
Populations of organisms are generally organized in a given spatial structure. However, the vast majority of population genetic studies are based on populations in which every individual competes globally. Here we use experimental evolution in Escherichia coli to directly test a recently made prediction that spatial structure slows down adaptation and that this cost increases with the mutation rate. This was studied by comparing populations of different mutation rates adapting to a liquid (unstructured) medium with populations that evolved in a Petri dish on solid (structured) medium. We find that mutators adapt faster to both environments and that adaptation is slower if there is spatial structure. We observed no significant difference in the cost of structure between mutator and wild-type populations, which suggests that clonal interference is intense in both genetic backgrounds.  相似文献   

9.
10.
11.
Multicopy plasmids in Escherichia coli are not randomly distributed throughout the cell but exist as defined clusters that are localized at the mid-cell, or at the 1/4 and 3/4 cell length positions. To explore the factors that contribute to plasmid clustering and localization, E. coli cells carrying a plasmid RK2 derivative that can be tagged with a green fluorescent protein-LacI fusion protein were subjected to various conditions that interfere with plasmid superhelicity and/or DNA replication. The various treatments included thymine starvation and the addition of the gyrase inhibitors nalidixic acid and novobiocin. In each case, localization of plasmid clusters at the preferred positions was disrupted but the plasmids remained in clusters, suggesting that normal plasmid superhelicity and DNA synthesis in elongating cells are not required for the clustering of individual plasmid molecules. It was also observed that the inhibition of DNA replication by these treatments produced filaments in which the plasmid clusters were confined to one or two nucleoid bodies, which were located near the midline of the filament and were not evenly spaced throughout the filament, as is found in cells treated with cephalexin. Finally, the enhanced yellow fluorescent protein-RarA fusion protein was used to localize the replication complex in individual E. coli cells. Novobiocin and nalidixic acid treatment both resulted in rapid loss of RarA foci. Under these conditions the RK2 plasmid clusters were not disassembled, suggesting that a completely intact replication complex is not required for plasmid clustering.  相似文献   

12.
Thymine deprivation in thyA mutant E. coli causes thymineless death (TLD) and is the mode of action of popular antibacterial and anticancer drugs, yet the mechanisms of TLD are still unclear. TLD comprises three defined phases: resistance, rapid exponential death (RED) and survival, with the nature of the resistance phase and of the transition to the RED phase holding key to TLD pathology. We propose that a limited source of endogenous thymine maintains replication forks through the resistance phase. When this source ends, forks undergo futile break-repair cycle during the RED phase, eventually rendering the chromosome non-functional. Two obvious sources of the endogenous thymine are degradation of broken chromosomal DNA and recruitment of thymine from stable RNA. However, mutants that cannot degrade broken chromosomal DNA or lack ribo-thymine, instead of shortening the resistance phase, deepen the RED phase, meaning that only a small fraction of T-starved cells tap into these sources. Interestingly, the substantial chromosomal DNA accumulation during the resistance phase is negated during the RED phase, suggesting futile cycle of incorporation and excision of wrong nucleotides. We tested incorporation of dU or rU, finding some evidence for both, but DNA-dU incorporation accelerates TLD only when intracellular [dUTP] is increased by the dut mutation. In the dut ung mutant, with increased DNA-dU incorporation and no DNA-dU excision, replication is in fact rescued even without dT, but TLD still occurs, suggesting different mechanisms. Finally, we found that continuous DNA synthesis during thymine starvation makes chromosomal DNA increasingly single-stranded, and even the dut ung defect does not completely block this ss-gap accumulation. We propose that instability of single-strand gaps underlies the pathology of thymine starvation.  相似文献   

13.
AIMS: The aim was to identify changes in outer membrane proteins (omps), OmpA, OmpC and OmpF, in Escherichia coli under starvation conditions in lake water microcosms studied at different temperatures. METHODS AND RESULTS: Escherichia coli was incubated in lake water microcosms at a variety of temperatures and the omps studied using quantitative densitometric analysis of protein bands of sodium dodecyl sulphate gels of omp preparations. The amount of OmpF increased over the incubation period relative to that of OmpC whereas the relative abundance of OmpA declined, most notably at 25 and 37 degrees C. This change was linked to changes in peak cell volume as determined by cell measurements. CONCLUSIONS: Major changes to the omps of E. coli accompany the adaptation of the organism to starvation conditions in lake water microcosms. SIGNIFICANCE AND IMPACT OF THE STUDY: Prolonged starvation affects the relative amounts of outer membrane porins. This study furthers the understanding of the role played by changes in the omp composition in E. coli during survival in lake water environments.  相似文献   

14.
15.
Two independently-isolated thymine-requiring mutant strains of Escherichia coli were found to possess an unusual phenotype: in the presence of CO2, growth was independent of thymine. The two strains showed different profiles of temperature sensitivity. Glycine, serine and methionine were unable to relieve the thymine-dependence. Both strains were susceptible to trimethoprim under conditions where they were thymine-independent. The results are consistent with the occurrence of partial defects in thymidylate synthase.  相似文献   

16.
17.
The loss of colony-forming ability and lysis of cells were studied after pulse-interrupted thymine starvation of a culture ofEscherichia coli 15 TAU which before starvation grew exponentially or was synchronized by starvation for arginine and uracil. Even a 5-minute pulse cancelled the effects of previous starvation leading to lysis, while loss of colony-forming ability after pulse was changed only slightly. The course of lysis and thymineless death after synchronization did not depend on the presence or absence of thymine during about a 40-min interval just after synchronization. With an appropriate time-schedule of pulses, it was possible to prolong the total time of interrupted starvation after which lysis did not appear.  相似文献   

18.
The Escherichia coli dGTP triphosphohydrolase (dGTPase) encoded by the dgt gene catalyses the hydrolysis of dGTP to deoxyguanosine and triphosphate. The recent discovery of a mutator effect associated with deletion of dgt indicated participation of the triphosphohydrolase in preventing mutagenesis. Here, we have investigated the possible involvement of dgt in facilitating thymine utilization through its ability to provide intracellular deoxyguanosine, which is readily converted by the DeoD phosphorylase to deoxyribose-1-phosphate, the critical intermediate that enables uptake and utilization of thymine. Indeed, we observed that the minimal amount of thymine required for growth of thymine-requiring (thyA) strains decreased with increased expression level of the dgt gene. As expected, this dgt-mediated effect was dependent on the DeoD purine nucleoside phosphorylase. We also observed that thyA strains experience growth difficulties upon nutritional shift-up and that the dgt gene facilitates adaptation to the new growth conditions. Blockage of the alternative yjjG (dUMP phosphatase) pathway for deoxyribose-1-phosphate generation greatly exacerbated the severity of thymine starvation in enriched media, and under these conditions the dgt pathway becomes crucial in protecting the cells against thymineless death. Overall, our results suggest that the dgt-dependent pathway for deoxyribose-1-phosphate generation may operate under various cell conditions to provide deoxyribosyl donors.  相似文献   

19.
The effect of magnesium starvation upon the fate of individual ribosomal proteins was studied in Escherichia coli. During a 21 h incubation in the absence of Mg2+ the 30 S subunit was more susceptible to degradation, retaining an average 31.9% of its ribosomal proteins as compared to 40.0% for the 50 S subunit. An examination of those 50-S proteins dissociated to a lesser extent than the average value (L1, L2, L3, L7, L10, L13, L16, L17, L19, L21, L22, L23, and L29) revealed that, with the exception of L16, all were classified by Dohme and Nierhaus [5] as tightly bound. Of the ribosomal proteins dissocated during magnesium starvation only five were reincorporated (and these to a minimal degree) during recovery of cells in a medium containing Mg2+. These studies suggest that ribosomal proteins once released from the ribosome particles during magnesium starvation are not reutilized in the assembly of new subunits.  相似文献   

20.
The trpX mutation in Escherichia coli reduces trp operon attenuation in strains carrying wild-type tRNATrp. The trpX? phenotype is alleviated (attenuation is restored) in UGA-suppressor tRNATrp-carrying strains (Yanofsky &; Soll, 1977).The tRNA from various trpX? strains was characterized biochemically. Sequence analyses of wild-type tRNATrp and UGA suppressor tRNATrp, both derived from trpX? strains, reveal an unmodified A in the position (adjacent to the anticodon) normally occupied by the hypermodified base ms2i6A.In addition, several tRNAs from trpX? cells were characterized by RPC-5 column chromatography. We find that only tRNAs normally having ms2i6A exhibit altered elution profiles when compared to the homologous tRNAs from trpX? cells. Introduction of the UGA suppressor into trpX? cells does not restore normal Chromatographic behavior. These results suggest that the trpX gene product is necessary for the synthesis of ms2i6A. Thus, we propose that miaA (for the first gene involved in ms2i6A synthesis) replaces the trpX designation.The results reported here are discussed with regard to a model proposed by Lee &; Yanofsky (1977) in which efficient translation of the tandem trp codons in the leader sequence RNA is required for normal attenuation of the trp operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号