首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the kidney, a unique plasticity exists between epithelial and mesenchymal cells. During kidney development, the metanephric mesenchyme contributes to emerging epithelium of the nephron via mesenchymal to epithelial transition (MET). In the injured adult kidney, renal epithelia contribute to the generation of fibroblasts via epithelial-mesenchymal transition, facilitating renal fibrosis. Recombinant human bone morphogenic protein (BMP)-7, a morphogen that is essential for the conversion of epithelia from condensing mesenchyme during kidney development, enhances the repair of tubular structures in the kidney. In this setting, BMP-7 inhibits epithelial-mesenchymal transition involving adult renal epithelial tubular cells and decreases secretion of type I collagen by adult renal fibroblasts. In search of a mechanism behind the ability of BMP-7 to repair damaged renal tubules, we hypothesized that systemic treatment with BMP-7 might induce MET involving adult renal fibroblasts in the injured kidney, generating functional epithelial cells. Here we report that BMP-7 induces formation of epithelial cell aggregates in adult renal fibroblasts associated with reacquisition of E-cadherin expression and decreased motility, mimicking the effect of BMP-7 on embryonic metanephric mesenchyme to generate epithelium. In addition, we provide evidence that BMP-7-mediated repair of renal injury is associated with MET involving adult renal interstitial fibroblasts in mouse models for renal fibrosis. Collectively, these findings suggest that adult renal fibroblasts might retain parts of their original embryonic imprint and plasticity, which can be re-engaged by systemic administration of BMP-7 to mediate repair of tubular injury in a fibrotic kidney.  相似文献   

3.
4.
上皮间质转化(epithelial-mesenchymal transition,EMT)是指上皮细胞失去连接和极性转变为间质细胞的过程,这一现象普遍存在于胚胎发育、创伤愈合、器官纤维化以及肿瘤转移.在胚胎早期发育和晚期发育过程,例如着床、原肠运动、心血管发育等事件中有EMT和间质上皮转化(mesenchymal-ep...  相似文献   

5.
Hypoxia is an important microenvironmental factor in the development of renal fibrosis; however, the underlying mechanisms are not well elucidated. Here we show that hypoxia induces Bmi1 mRNA and protein expression in human tubular epithelial cells. We further demonstrate that Bmi1 expression might be directly regulated by hypoxia-inducible factor-1a (HIF-1a) under low oxygen. Moreover, chromatin immunoprecipitation and reporter gene assay studies reveal cooperative transactivation of Bmi1 by HIF-1α and Twist. Enforced Bmi1 expression induces epithelial–mesenchymal transition (EMT), whereas silencing endogenous Bmi-1 expression reverses hypoxia-induced EMT. Up-regulation of Bmi1 leads to stabilization of Snail via modulation of PI3K/Akt signaling, whereas ablation of PI3K/Akt signaling partially rescues the phenotype of Bmi1-overexpressing cells, indicating that PI3K/Akt signaling might be a major mediator of Bmi1-induced EMT. In a rat model of obstructive nephropathy, Bmi1 expression increases in a time-dependent manner. Furthermore, we demonstrate that increased levels of Bmi1, correlated with HIF-1α and Twist, are associated with patients with chronic kidney disease. We provide in vitro and in vivo evidence that activation of HIF-1a/Twist-Bmi1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis via modulation of PI3K/Akt/Snail signaling by facilitating EMT.  相似文献   

6.
Obstructive nephropathy is an aggressive form of chronic kidney disease (CKD), which is characterized by an epithelial-to-mesenchymal transition (EMT) and interstitial fibrosis. However, the molecular mechanisms of EMT and fibrosis are complex and not fully understood. In this study, we investigated the contribution of Akt2 to experimental renal EMT and fibrosis using the well-established model of unilateral ureteral obstruction (UUO). We found that Akt2 and phosphor (p)-Akt protein levels were increased in the obstructed kidneys. UUO induced activation of transforming growth factor-β1 (TGF-β1) signaling. Importantly, knockout of Akt2 suppressed UUO-induced EMT, kidney fibrosis, increased GSK3β activity, and decreased expression of Snail and β-catenin. Inhibition of GSK3β with LiCl (the inhibitor of GSK3β) increased the expression of Snail and β-catenin in cultured kidney epithelial cells. Our findings suggest that Akt2 partially contributes to interstitial fibrosis following UUO and that inhibition of this signaling pathway may provide a novel approach of prevent progression of renal fibrosis.  相似文献   

7.
Lens epithelial cells undergo epithelial-mesenchymal transition (EMT) after injury as in cataract extraction, leading to fibrosis of the lens capsule. We have previously shown that EMT of primary lens epithelial cells in vitro depends on TGF-beta expression and more specifically, on signaling via Smad3. In this report, we suggest phosphatidylinositol 3-OH kinase (PI3K)/Akt signaling is also necessary for TGF-beta-induced EMT in lens epithelial cells by showing that LY294002, an inhibitor of the p110 catalytic subunit of PI3K, blocked the expression of alpha-smooth muscle actin (alpha-SMA) and morphological changes. We also identify Snail as an effector of TGF-beta-induced EMT. Snail has been shown to be a mediator of EMT during metastasis of cancer. We show that Snail is an immediate-early response gene for TGF-beta and the proximal Snail promoter is activated by TGF-beta through the action of Smad2, 3, and 4. We show that antisense inhibition of Snail expression blocks TGF-beta-induced EMT and furthermore Akt activation. All of these findings suggest that Snail participates in TGF-beta-induced EMT by acting upstream of Akt activation.  相似文献   

8.
While the activity of Snail genes is required during embryonic development for the formation of different tissues and organs, they must be repressed in the adult in order to maintain epithelial integrity and homeostasis. Indeed, pathological activation of Snail in epithelial tumors induces malignancy and the recurrence of tumors. Here we show that in dedifferentiated areas of human renal carcinomas, Snail undergoes a process of reactivation. In addition to tumor progression, renal fibrosis is also linked to the activity of Snail genes and indeed, reactivation of Snail in the adult kidney is sufficient to induce fibrosis. Thus, Snail genes illustrate a paradigm whereby reactivation of crucial embryonic genes in adult tissues provokes the onset of devastating diseases.  相似文献   

9.
Bone morphogenic protein (BMP)-7 is a 35-kDa homodimeric protein and a member of the transforming growth factor (TGF)-beta superfamily. BMP-7 expression is highest in the kidney, and its genetic deletion in mice leads to severe impairment of eye, skeletal and kidney development. Here we report that BMP-7 reverses TGF-beta1-induced epithelial-to-mesenchymal transition (EMT) by reinduction of E-cadherin, a key epithelial cell adhesion molecule. Additionally, we provide molecular evidence for Smad-dependent reversal of TGF-beta1-induced EMT by BMP-7 in renal tubular epithelial cells and mammary ductal epithelial cells. In the kidney, EMT-induced accumulation of myofibroblasts and subsequent tubular atrophy are considered key determinants of renal fibrosis during chronic renal injury. We therefore tested the potential of BMP-7 to reverse TGF-beta1-induced de novo EMT in a mouse model of chronic renal injury. Our results show that systemic administration of recombinant human BMP-7 leads to repair of severely damaged renal tubular epithelial cells, in association with reversal of chronic renal injury. Collectively, these results provide evidence of cross talk between BMP-7 and TGF-beta1 in the regulation of EMT in health and disease.  相似文献   

10.
End‐stage renal disease, the final stage of all chronic kidney disorders, is associated with renal fibrosis and inevitably leads to renal failure and death. Transition of tubular epithelial cells (TECs) into mesenchymal fibroblasts constitutes a proposed mechanism underlying the progression of renal fibrosis and here we assessed whether protease‐activated receptor (PAR)‐1, which recently emerged as an inducer of epithelial‐to‐mesenchymal transition (EMT), aggravates renal fibrosis. We show that PAR‐1 activation on TECs reduces the expression of epithelial markers and simultaneously induces mesenchymal marker expression reminiscent of EMT. We next show that kidney damage was reduced in PAR‐1‐deficient mice during unilateral ureter obstruction (UUO) and that PAR‐1‐deficient mice develop a diminished fibrotic response. Importantly, however, we did hardly observe any signs of mesenchymal transition in both wild‐type and PAR‐1‐deficient mice suggesting that diminished fibrosis in PAR‐1‐deficient mice is not due to reduced EMT. Instead, the accumulation of macrophages and fibroblasts was significantly reduced in PAR‐1‐deficient animals which were accompanied by diminished production of MCP‐1 and TGF‐β. Overall, we thus show that PAR‐1 drives EMT of TECs in vitro and aggravates UUO‐induced renal fibrosis although this is likely due to PAR‐1‐dependent pro‐fibrotic cytokine production rather than EMT.  相似文献   

11.
12.
13.
14.
Notch signalling pathway has been implicated as an important contributor to epithelial to myofibroblast transformation (EMT) in tumourigenesis. However, its role in kidney tubular cells undergoing EMT is not defined. This study assessed Notch signalling and the downstream effects on Snail in cultured proximal tubular epithelial cells. EMT was induced by exposure to transforming growth factor beta-1 (TGFβ1) and angiotensin II (AngII). The expressions of Notch1, Snail, E-cadherin and α-smooth muscle actin (α-SMA) were determined by Western blot. Matrix Metalloproteinase (MMP)-2 and -9 production were determined by zymography. The specific roles of Notch1-ICD and Snail were determined by gene expression or siRNA technique respectively. TGFβ1 and AngII resulted in EMT as characterized by the expected decrease in E-cadherin expression, an increase in α-SMA, MMP-2 and MMP-9 expression and associated increase of Notch1 and Snail. Over-expression of Notch1-ICD similarly resulted in increased Snail expression, loss of E-cadherin and increasedα-SMA. Inhibiting Snail degradation by pre-treatment with lithium chloride (LiCl) led to a further decrease in E-cadherin expression in cells concurrently exposed to TGFβ1 + AngII, confirming that Snail is a repressor of E-cadherin. Silencing of Snail blocked TGFβ1 + AngII induced EMT. Inhibition of Notch activation, by concurrent exposure to DAPT during the induction of EMT attenuated the decrease in E-cadherin expression, limited the increase in α-SMA and MMP-2 and -9 expression and decreased Snail expression. These results suggest a direct role for Notch signalling via the Snail pathway in the development of EMT and renal fibrosis.  相似文献   

15.
Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in tubulointerstitial fibrosis, which is a hallmark of diabetic nephropathy. Thus, identifying the mechanisms of EMT activation could be meaningful. In this study, loss of miR‐30c accompanied with increased EMT was observed in renal tubules of db/db mice and cultured HK2 cells exposed to high glucose. To further explore the roles of miR‐30c in EMT and tubulointerstitial fibrosis, recombinant adeno‐associated viral vector was applied to manipulate the expression of miR‐30c. In vivo study showed that overexpression of miR‐30c suppressed EMT, attenuated renal tubulointerstitial fibrosis and reduced proteinuria, serum creatinine, and BUN levels. In addition, Snail1 was identified as a direct target of miR‐30c by Ago2 co‐immunoprecipitation, luciferase reporter, and Western blot assays. Downregulating Snail1 by siRNA reduced high glucose‐induced EMT in HK2 cells, and miR‐30c mimicked the effects. Moreover, miR‐30c inhibited Snail1‐TGF‐β1 axis in tubular epithelial cells undergoing EMT and thereby impeded the release of TGF‐β1; oppositely, knockdown of miR‐30c enhanced the secretion of TGF‐β1 from epitheliums and significantly promoted proliferation of fibroblasts and fibrogenesis of myofibroblasts, aggravated tubulointerstitial fibrosis, and dysfunction of diabetic nephropathy. These results suggest a protective role of miR‐30c against diabetic nephropathy by suppressing EMT via inhibiting Snail1‐TGF‐β1 pathway.  相似文献   

16.
17.
18.
19.
In polycystic kidney disease (PKD), cyst lining cells show polarity abnormalities. Recent studies have demonstrated loss of cell contact in cyst cells, suggesting induction of epithelial-to-mesenchymal transition (EMT). Recently, EMT has been implicated in the pathogenesis of PKD. To explore further evidence of EMT in PKD, we examined age- and segment-specific expression of adhesion molecules and mesenchymal markers in PCK rats, an orthologous model of human autosomal-recessive PKD. Kidneys from 5 male PCK and 5 control rats each at 0 days, 1, 3, 10, and 14 wk, and 4 mo of age were serially sectioned and stained with segment-specific markers and antibodies against E-cadherin, Snail1, β-catenin, and N-cadherin. mRNAs for E-cadherin and Snail1 were quantified by real-time PCR. Vimentin, fibronectin, and α-smooth muscle actin (α-SMA) expressions were assessed as mesenchymal markers. E-cadherin expression pattern was correlated with the disease pathology in that tubule segments showing the highest expression in control had much severer cyst formation in PCK rats. In PCK rats, E-cadherin and β-catenin in cystic tubules was attenuated and localized to lateral areas of cell-cell contact, whereas nuclear expression of Snail1 increased in parallel with cyst enlargement. Some epithelial cells in large cysts derived from these segments, especially in adjacent fibrotic areas, showed positive immunoreactivity for vimentin and fibronectin. In conclusion, these findings suggest that epithelial cells in cysts acquire mesenchymal features in response to cyst enlargement and participate in progressive renal fibrosis. Our study clarified the nephron segment-specific cyst profile related to EMT in PCK rats. EMT may play a key role in polycystic kidney disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号