首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated whether depressed muscle Na(+)-K(+)-ATPase activity with exercise reflected a loss of Na(+)-K(+)-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na(+)-K(+)-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at approximately 40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na(+)-K(+)-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na(+)-K(+)-ATPase content via [(3)H]ouabain binding sites, and Na(+)-K(+)-ATPase alpha(1)-, alpha(2)-, alpha(3)-, beta(1)-, beta(2)- and beta(3)-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [(3)H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated alpha(1)-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Delta3-O-MFPase(rest-fatigue)) (r = -0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) alpha(1)-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Delta3-O-MFPase(rest-fatigue) (r = -0.56, P = 0.08). Exercise elevated alpha(2)-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Delta3-O-MFPase(rest-fatigue) (r = -0.60, P = 0.05). The average postexercise alpha(2)-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Delta3-O-MFPase(rest-fatigue) (r = -0.68, P < 0.05). Nonsignificant correlations were found between %Delta3-O-MFPase(rest-fatigue) and other isoforms. Thus acute exercise transiently decreased Na(+)-K(+)-ATPase activity, which was correlated with increased Na(+)-K(+)-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na(+)-K(+)-ATPase activity with exercise.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
—Batrachotoxin (BTX) in low concentrations (20 nm ) depolarizes electrically excitable membranes (Albuquerque , Daly and Witkop , 1971). At these levels, BTX does not inhibit Na+-K+-ATPase. At much higher concentrations (60 μm ) BTX partially inhibits Na+-K+-ATPase from electroplax of Electrophorus electricus. In contrast to inhibition by cardiac glycosides, the inhibition of Na+-K+-ATPase by batrachotoxin is not antagonized by KCl. BTX had no effect on ATP levels in stimulated nerve muscle preparations at the time when sustained contracture was initiated by the drug. Phosphocreatine levels were decreased and levels of glucose-6-phosphate and 6-phosphogluconate were increased, while levels of fructose-1,6-diphosphate and α-ketoglutarate were unchanged. It is concluded that the inhibition of Na+-K+-ATPase or lowering of ATP levels by BTX is not significantly involved in the membrane depolarization produced by the toxin.  相似文献   

12.
13.
Cardiopulmonary bypass (CPB) may induce serious side effects, potentially leading to myocardial failure. The Na(+)-K(+)-ATPase is a key component for myocardial function. Due to its developmental regulation, results from adult studies cannot be adopted to the situation in childhood. Right atrial myocardium from patients with left-to-right shunts at atrial level (VO, n=8) and those without (NO, n=8) was excised during heart surgery before and after CPB. Na(+)-K(+)-ATPase isoforms ATP1A1 (p=0.008) and ATP1A3 (p=0.038) decreased during CPB, which decrease was restricted to the VO group. This study highlights the importance of the underlying heart defect for susceptibility to the effects of CPB, showing a reduced Na(+)-K(+)-ATPase mRNA expression only in patients with left-to-right shunts on the atrial level. This seemed to be an early molecular event, as apart from one, none of the patients showed heart failure before or after surgery.  相似文献   

14.
15.
16.
Cytochemical localization of Na+-K+-ATPase in rat type II pneumocytes   总被引:3,自引:0,他引:3  
The distribution of sodium-potassium-activated adenosinetriphosphatase (Na+-K+-ATPase) in the alveolar portion of rat lungs was examined by indirect immunofluorescence with the use of a mouse monoclonal anti-rat Na+-K+-ATPase and by ultrastructural cytochemistry using p-nitrophenylphosphate as substrate. The reaction was inhibitable by 10 mM ouabain or by the omission of K+ from the reaction mixture. Cysteine or levamisole was used to inhibit alkaline phosphatase activity. By immunofluorescence, staining was confined to cuboidal cells in alveolar spaces. These were tentatively identified as type II pneumocytes. By ultrastructural cytochemistry reaction product was present on the cytoplasmic side of the basolateral membranes of type II pneumocytes. No reaction product was observed in type I pneumocytes or in endothelium. These results indicate that type II pneumocytes contain more Na+-K+-ATPase, an enzyme important in vectorial electrolyte transport, than type I pneumocytes or endothelial cells. More sensitive methods, however, are required to determine the amounts and distribution of this enzyme in type I pneumocytes and pulmonary vascular endothelial cells.  相似文献   

17.
18.
The proton pump H+-K+-ATPase is the final common pathway mediating the production and secretion of hydrochloric acid by gastric parietal cells. The present studies were undertaken to examine whether the expression of gastric H+-K+-ATPase mRNA and protein changes are associated with the development of H+-K+-ATPase activity in the rat fundic gland. H+-K+-ATPase activity was examined in rat fundic gland at different stages from gestational day 18.5 to postnatal 8 weeks. The expression of H+-K+-ATPase mRNA was detected by in situ hybridization using a digoxigenin-labelled RNA probe with a tyramide signal amplification system. The expression of H+-K+-ATPase protein was evaluated by immunoblotting and immunohistochemistry using antibodies against H+-K+-ATPase - and -subunits. We found that H+-K+-ATPase enzyme activity was detectable from the onset of gland formation (day 19.5 of gestation) and increased with age in the developing rat fundic gland. Expression of mRNA and protein was also discernible at the same time, and a progressive increase in expressions was observed as rats developed. Our results suggested that in developing rat fundic gland, the expression of both mRNA and protein of H+-K+-ATPase increased with age in a manner that parallels the development of H+-K+-ATPase enzymebreak activity.  相似文献   

19.
Hyperinsulinemia increases lactate release by various organs and tissues. Whereas it has been shown that aerobic glycolysis is linked to Na+-K+-ATPase activity, we hypothesized that stimulation by insulin of skeletal muscle Na+-K+-ATPase is responsible for increased muscle lactate production. To test this hypothesis, we assessed muscle lactate release in healthy volunteers from the [13C]lactate concentration in the effluent dialysates of microdialysis probes inserted into the tibialis anterior muscles on both sides and infused with solutions containing 5 mmol/l [U-13C]glucose. On one side, the microdialysis probe was intermittently infused with the same solution additioned with 2.10(-5) M ouabain. In the basal state, [13C]lactate concentration in the dialysate was not affected by ouabain. During a euglycemic-hyperinsulinemic clamp, [13C]lactate concentration increased by 135% in the dialysate without ouabain, and this stimulation was nearly entirely reversed by ouabain (56% inhibition compared with values in the dialysate collected from the contralateral probe). These data indicate that insulin stimulates muscle lactate release by activating Na+-K+-ATPase in healthy humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号