首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether the gene expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR and neuropilin-1 [NRP-1]) could be specifically regulated during the megakaryocytic differentiation of human thrombopoietin (TPO)-dependent UT-7/TPO cells. Undifferentiated UT-7/TPO cells expressed a functional VEGFR-2, leading to VEGF binding and VEGF165-induced tyrosine phosphorylation, cell proliferation, and apoptosis inhibition. The megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of NRP-1 mRNA and protein expression and by an increase in VEGF-binding activity, which was mainly mediated by VEGFR-2. VEGF165 promoted the formation of complexes containing NRP-1 and VEGFR-2 in undifferentiated UT-7/TPO cells in a dose-dependent manner. Unlike human umbilical vein endothelial cells, PMA-differentiated UT-7/TPO cells exhibited complex formation between NRP-1 and VEGFR-2 even in the absence of VEGF165. These findings suggest that NRP-1-VEGFR-2-complex formation may contribute to effective cellular functions mediated by VEGF165 in megakaryocytic cells.  相似文献   

2.
Neuropilin-1 (NRP-1) is present on the cell surface of endothelial cells, or as a soluble truncated variant. Membrane NRP-1 is proposed to enhance angiogenesis by promoting the formation of a signaling complex between vascular endothelial growth factor-A(165) (VEGF-A(165)), VEGF receptor-2 (VEGFR-2) and heparan sulfate, whereas the soluble NRP-1 is thought to act as an antagonist of signaling complex formation. We have analyzed the angiogenic potential of a chimera comprising the entire extracellular NRP-1 region dimerized through an Fc IgG domain and a monomeric truncated NRP-1 variant. Both NRP-1 proteins stimulated tubular morphogenesis and cell migration in HDMECs and HUVECs. Fc rNRP-1 was able to induce VEGFR-2 phosphorylation and expression of the VEGFR-2 specific target, regulator of calcineurin-1 (RCAN1.4). siRNA mediated gene silencing of VEGFR-2 revealed that VEGFR-2 was required for Fc rNRP-1 mediated activation of the intracellular signaling proteins PLC-γ, AKT, and MAPK and tubular morphogenesis. The stimulatory activity was independent of VEGF-A(165). This was evidenced by depleting the cell culture of exogenous VEGF-A(165), and using instead for routine culture VEGF-A(121), which does not interact with NRP-1, and by the inability of VEGF-A sequestering antibodies to inhibit the angiogenic activity of the NRP proteins. Analysis of angiogenesis over a period of 6 days in an in vitro fibroblast/endothelial co-culture model revealed that Fc rNRP-1 could induce endothelial cell tubular morphogenesis. Thus, we conclude that soluble Fc rNRP-1 is a VEGF-A(165)-independent agonist of VEGFR-2 and stimulates angiogenesis in endothelial cells.  相似文献   

3.
Neuropilin-1 (NRP-1) is a co-receptor for vascular endothelial growth factor (VEGF). During neovascularization, vascular smooth muscle cells (VSMCs) and pericytes modulate the function of endothelial cells. Factors that mediate NRP-1 in human VSMCs (hVSMCs) remain to be elucidated. We studied various angiogenic cytokines to identify factors that increase NRP-1 expression in hVSMCs. Treatment of hVSMCs with basic fibroblast growth factor (b-FGF) induced expressions of NRP-1 mRNA and protein whereas epidermal growth factor, insulin-like growth factor-1, and interleukin-1beta did not. b-FGF induced phosphorylation of Erk-1/2 and JNK. MEK1/2 and nuclear factor kappa B (NF-kappaB) inhibitors (U0126 and TLCK, respectively) blocked the ability of b-FGF to induce NRP-1 mRNA expression, but inhibition of JNK (SP600125) or PI3-kinase activity (wortmannin) did not. Further, the increase in NRP-1 expression by b-FGF enhanced hVSMCs migration in response to VEGF(165). This effect was dependent on the binding of VEGF(165) to VEGFR-2, as blocking antibodies to VEGFR-2, but not VEGFR-1, inhibited VEGF(165)-induced migration. In conclusion, b-FGF increased NRP-1 expression in hVSMCs that in turn enhance the effect of VEGF(165) on cell migration. The enhanced migration of hVSMCs was mediated through binding of VEGF(165) to both NRP-1 and VEGFR-2, as inhibition of VEGFR-2 on these cells blocked the effect of VEGF-mediated cell migration.  相似文献   

4.
Angiogenesis is a highly regulated process orchestrated by the VEGF system. Heparin/heparan sulfate proteoglycans and neuropilin-1 (NRP-1) have been identified as co-receptors, yet the mechanisms of action have not been fully defined. In the present study, we characterized molecular interactions between receptors and co-receptors, using surface plasmon resonance and in vitro binding assays. Additionally, we demonstrate that these binding events are relevant to VEGF activity within endothelial cells. We defined interactions and structural requirements for heparin/HS interactions with VEGF receptor (VEGFR)-1, NRP-1, and VEGF165 in complex with VEGFR-2 and NRP-1. We demonstrate that these structural requirements are distinct for each interaction. We further show that VEGF165, VEGFR-2, and monomeric NRP-1 bind weakly to heparin alone yet show synergistic binding to heparin when presented together in various combinations. This synergistic binding appears to translate to alterations in VEGF signaling in endothelial cells. We found that soluble NRP-1 increases VEGF binding and activation of VEGFR-2 and ERK1/2 in endothelial cells and that these effects require sulfated HS. These data suggest that the presence of HS/heparin and NRP-1 may dictate the specific receptor type activated by VEGF and ultimately determine the biological output of the system. The ability of co-receptors to fine-tune VEGF responsiveness suggests the possibility that VEGF-mediated angiogenesis can be selectively stimulated or inhibited by targeting HS/heparin and NRP-1.  相似文献   

5.
We previously reported that vascular endothelial growth factor (VEGF)-A(165) inflammatory effect is mediated by acute platelet-activating factor synthesis from endothelial cells upon the activation of VEGF receptor-2 (VEGFR-2) and its coreceptor, neuropilin-1 (NRP-1). In addition, VEGF-A(165) promotes the release of other endothelial mediators including nitric oxide and prostacyclin (PGI(2)). However, it is unknown whether VEGF-A(165) is mediating PGI(2) synthesis through VEGF receptor-1 (VEGFR-1) and/or VEGF receptor-2 (VEGFR-2) activation and whether the coreceptor NRP-1 potentiates VEGF-A(165) activity. In this study, PGI(2) synthesis in bovine aortic endothelial cells (BAEC) was assessed by quantifying its stable metabolite (6-keto prostaglandin F(1alpha), 6-keto PGF(1alpha)) by enzyme-linked immunosorbent assay. Treatment of BAEC with VEGF analogs, VEGF-A(165) (VEGFR-1, VEGFR-2 and NRP-1 agonist) and VEGF-A(121) (VEGFR-1 and VEGFR-2 agonist) (up to 10(-9) m), increased PGI(2) synthesis by 70- and 40-fold within 15 min. Treatment with VEGFR-1 (placental growth factor and VEGF-B) or VEGFR-2 (VEGF-C) agonist did not increase PGI(2) synthesis. The combination of VEGFR-1 and VEGFR-2 agonists did not increase PGI(2) release. Pretreatment with a VEGFR-2 inhibitor abrogated PGI(2) release mediated by VEGF-A(165) and VEGF-A(121), and pretreatment of BAEC with antisense oligomers targeting VEGFR-1 or VEGFR-2 mRNA reduced PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121) up to 79%. In summary, our data demonstrate that the activation of VEGFR-1 and VEGFR-2 heterodimer (VEGFR-1/R-2) is essential for PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121), which cannot be reproduced by the parallel activation of VEGFR-1 and VEGFR-2 homodimers with corresponding agonists. In addition, the binding of VEGF-A(165) to NRP-1 potentiates its capacity to promote PGI(2) synthesis.  相似文献   

6.
Progressive pulmonary inflammation and emphysema have been implicated in the progression of chronic obstructive pulmonary disease (COPD), while current pharmacological treatments are not effective. Transplantation of bone marrow mesenchymal stem cells (MSCs) has been identified as one such possible strategy for treatment of lung diseases including acute lung injury (ALI) and pulmonary fibrosis. However, their role in COPD still requires further investigation. The aim of this study is to test the effect of administration of rat MSCs (rMSCs) on emphysema and pulmonary function. To accomplish this study, the rats were exposed to cigarette smoke (CS) for 11 weeks, followed by administration of rMSCs into the lungs. Here we show that rMSCs infusion mediates a down‐regulation of pro‐inflammatory mediators (TNF‐α, IL‐1β, MCP‐1, and IL‐6) and proteases (MMP9 and MMP12) in lung, an up‐regulation of vascular endothelial growth factor (VEGF), VEGF receptor 2, and transforming growth factor (TGFβ‐1), while reducing pulmonary cell apoptosis. More importantly, rMSCs administration improves emphysema and destructive pulmonary function induced by CS exposure. In vitro co‐culture system study of human umbilical endothelial vein cells (EA.hy926) and human MSCs (hMSCs) provides the evidence that hMSCs mediates an anti‐apoptosis effect, which partly depends on an up‐regulation of VEGF. These findings suggest that MSCs have a therapeutic potential in emphysematous rats by suppressing the inflammatory response, excessive protease expression, and cell apoptosis, as well as up‐regulating VEGF, VEGF receptor 2, and TGFβ‐1. J. Cell. Biochem. 114: 323–335, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Vascular endothelial growth factor (VEGF) plays an important role in normal and pathological angiogenesis. VEGF receptors (VEGFRs, including VEGFR-1, VEGFR-2, and VEGFR-3) and neuropilins (NRPs, including NRP-1 and NRP-2) are high-affinity receptors for VEGF and are typically considered to be specific for endothelial cells. Here we showed expression of VEGFRs and NRPs on cultured epidermal keratinocytes at both mRNA and protein levels. We further localized these receptors by immunofluorescence (IF) staining in the epidermis of surgical skin specimens. We found positive staining for VEGFRs and NRPs in all layers of the epidermis except for the stratum corneum. VEGFR-1 and VEGFR-2 are primarily expressed on the cytoplasmic membrane of basal cells and the adjacent spinosum keratinocytes. All layers of the epidermis except for the horny cell layer demonstrated a uniform pattern of VEGFR-3, NRP-1, and NRP-2. Sections staining for NRP-1 and NRP-2 also showed diffuse intense fluorescence and were localized to the cell membrane and cytoplasm of keratinocytes. In another panel of experiments, keratinocytes were treated with different concentrations of VEGF, with or without VEGFR-2 neutralizing antibody in culture. VEGF enhanced the proliferation and migration of keratinocytes, and these effects were partially inhibited by pretreatment with VEGFR-2 neutralizing antibody. Adhesion of keratinocytes to type IV collagen-coated culture plates was decreased by VEGF treatment, but this reduction could be completely reversed by pretreatment with VEGFR-2 neutralizing antibody. Taken together, our results suggest that the expression of VEGFRs and NRPs on keratinocytes may constitute important regulators for its activity and may possibly be responsible for the autocrine signaling in the epidermis.  相似文献   

8.
Chronic Obstructive Pulmonary Disease (COPD) is characterized by airspace enlargement and peribronchial lymphoid follicles; however, the immunological mechanisms leading to these pathologic changes remain undefined. Here we show that cigarette smoke is a selective adjuvant that augments in vitro and in vivo Th17, but not Th1, cell differentiation via the aryl hydrocarbon receptor. Smoke exposed IL-17RA(-/-) mice failed to induce CCL2 and MMP12 compared to WT mice. Remarkably, in contrast to WT mice, IL-17RA(-/-) mice failed to develop emphysema after 6 months of cigarette smoke exposure. Taken together, these data demonstrate that cigarette smoke is a potent Th17 adjuvant and that IL-17RA signaling is required for chemokine expression necessary for MMP12 induction and tissue emphysema.  相似文献   

9.
Neuropilin-1 (NRP-1) has been found to be expressed by endothelial cells and tumor cells as an isoform-specific receptor for vascular permeability factor/vascular endothelial growth factor (VEGF). Previous studies were mainly focused on the extracellular domain of NRP-1 that can bind to VEGF165 and, thus, enables NRP-1 to act as a co-receptor for VEGF165, which enhances its binding to VEGFR-2 and its bioactivity. However, the exact functional roles and related signaling mechanisms of NRP-1 in angiogenesis are not well understood. In this study we constructed a chimeric receptor, EGNP-1, by fusing the extracellular domain of epidermal growth factor receptor to the transmembrane and intracellular domains of NRP-1 and transduced it into HUVECs with a retroviral expression vector. We observed that NRP-1/EGNP-1 mediates ligand-stimulated migration of human umbilical vein endothelial cells (HUVECs) but not proliferation. Our results show that NRP-1 alone can mediate HUVEC migration through its intracellular domain, and its C-terminal three amino acids (SEA-COOH) are essential for the process. We demonstrate that phosphatidylinositol 3-kinase inhibitor Ly294002 and the p85 dominant negative mutant can block NRP-1-mediated HUVEC migration. NRP-1-mediated migration can be significantly reduced by overexpression of the dominant negative mutant of RhoA (RhoA-19N). In addition, Gq family proteins and Gbetagamma subunits are also required for NRP-1-mediated HUVEC migration. These results show for the first time that NRP-1 can independently promote cell signaling in endothelial cells and also demonstrate the importance of last three amino acids of NRP-1 for its function.  相似文献   

10.
Vascular endothelial growth factor (VEGF) acts as a hierarchically high switch of the angiogenic cascade by interacting with its high affinity VEGF receptors and with neuropilin co-receptors. VEGF(165) binds to both Neuropilin-1 (NP-1) and VEGFR-2, and it is believed that ligand binding forms an extracellular bridge between both molecules. This leads to complex formation, thereby enhancing VEGFR-2 phosphorylation and subsequent signaling. We found that inhibition of VEGF receptor (VEGFR) phosphorylation reduced complex formation between NP-1 and VEGFR-2, suggesting a functional role of the cytoplasmic domain of VEGFR-2 for complex formation. Correspondingly, deleting the PDZ-binding domain of NP-1 decreased complex formation, indicating that extracellular VEGF(165) binding is not sufficient for VEGFR-2-NP-1 interaction. Synectin is an NP-1 PDZ-binding domain-interacting molecule. Experiments in Synectin-deficient endothelial cells revealed reduced VEGFR-2-NP-1 complex formation, suggesting a role for Synectin in VEGFR-2-NP-1 signaling. Taken together, the experiments have identified a novel mechanism of NP-1 interaction with VEGFR-2, which involves the cytoplasmic domain of NP-1.  相似文献   

11.
The interstitial collagenase matrix metalloprotein-ase-1 (MMP-1) is up-regulated in the lung during pulmonary emphysema. The mechanisms underlying this aberrant expression are poorly understood. Although cigarette smoking is the predominant cause of emphysema, only 15-20% of smokers develop the disease. To define the signaling pathways activated by smoke and to identify molecules responsible for emphysema-associated MMP-1 expression, we performed several in vitro and in vivo experiments. In this study, we showed that cigarette smoke directly induced MMP-1 mRNA and protein expression and increased the collagenolytic activity of human airway cells. Treatment with various chemical kinase inhibitors revealed that this response was dependent on the extracellular regulated kinase-1/2 (ERK) mitogen activated protein kinase pathway. Cigarette smoke increased phosphorylation of residues Thr-202 and Tyr-204 of ERK in airway lining cells and alveolar macrophages in mice at 10 days and 6 months of exposure. Moreover, analysis of lung tissues from emphysema patients revealed significantly increased ERK activity compared with lungs of control subjects. This ERK activity was evident in airway lining and alveolar cells. The identification of active ERK in the lungs of emphysema patients and the finding that induction of MMP-1 by cigarette smoke in pulmonary epithelial cells is ERK-dependent reveal a molecular mechanism and potential therapeutic target for excessive matrix remodeling in smokers who develop emphysema.  相似文献   

12.
The concept of genetic susceptibility factors predisposing cigarette smokers to develop emphysema stems from the clinical observation that only a fraction of smokers develop clinically significant chronic obstructive pulmonary disease. We investigated whether Smad3 knockout mice, which develop spontaneous air space enlargement after birth because of a defect in transforming growth factor-β (TGF-β) signaling, develop enhanced alveolar cell apoptosis and air space enlargement following cigarette smoke exposure. We investigated Smad3(-/-) and Smad3(+/+) mice at different adult ages and determined air space enlargement, alveolar cell proliferation, and apoptosis. Furthermore, laser-capture microdissection and real-time PCR were used to measure compartment-specific gene expression. We then compared the effects of cigarette smoke exposure on Smad3(-/-) and littermate controls. Smad3 knockout resulted in the development of air space enlargement in the adult mouse and was associated with decreased alveolar VEGF levels and activity and increased alveolar cell apoptosis. Cigarette smoke exposure aggravated air space enlargement and alveolar cell apoptosis. We also found increased Smad2 protein expression and phosphorylation, which was enhanced following cigarette smoke exposure, in Smad3-knockout animals. Double immunofluorescence analysis revealed that endothelial apoptosis started before epithelial apoptosis. Our data indicate that balanced TGF-β signaling is not only important for regulation of extracellular matrix turnover, but also for alveolar cell homeostasis. Impaired signaling via the Smad3 pathway results in alveolar cell apoptosis and alveolar destruction, likely via increased Smad2 and reduced VEGF expression and might represent a predisposition for accelerated development of emphysema due to cigarette smoke exposure.  相似文献   

13.
Long-term exposure to cigarette smoke (CS) can have deleterious effects on lung epithelial cells including cell death and the initiation of inflammatory responses. CS-induced cell injury can elaborate cell surface signals and cellular byproducts that stimulate immune system surveillance. Our previous work has shown that the expression of ligands for the cytotoxic lymphocyte activating receptor NKG2D is enhanced in patients with COPD and that the induction of these ligands in a mouse model can replicate COPD pathologies. Here, we extend these findings to demonstrate a role for the NKG2D receptor in CS-induced pathophysiology and provide evidence linking nucleic acid-sensing endosomal toll-like receptor (TLR) signaling to COPD pathology through NKG2D activation. Specifically, we show that mice deficient in NKG2D exhibit attenuated pulmonary inflammation and airspace enlargement in a model of CS-induced emphysema. Additionally, we show that CS exposure induces the release of free nucleic acids in the bronchoalveolar lavage and that direct exposure of mouse lung epithelial cells to cigarette smoke extract similarly induces functional nucleic acids as assessed by TLR3, 7, and 9 reporter cell lines. We demonstrate that exposure of mouse lung epithelial cells to TLR ligands stimulates the surface expression of RAET1, a ligand for NKG2D, and that mice deficient in TLR3/7/9 receptor signaling do not exhibit CS-induced NK cell hyperresponsiveness and airspace enlargement. The findings indicate that CS-induced airway injury stimulates TLR signaling by endogenous nucleic acids leading to elevated NKG2D ligand expression. Activation of these pathways plays a major role in the altered NK cell function, pulmonary inflammation and remodeling related to long-term CS exposure.  相似文献   

14.
Neuropilin-1 (NRP-1), a non-tyrosine kinase receptor of vascular endothelial growth factor-165 (VEGF165), was found expressed on endothelial and some tumor cells. Since its overexpression is correlated with tumor angiogenesis and progression, the targeting of NRP-1 could be a potential anti-cancer strategy. To explore this hypothesis, we identified a peptide inhibiting the VEGF165 binding to NRP-1 and we tested whether it was able to inhibit tumor growth and angiogenesis. To prove the target of peptide action, we assessed its effects on binding of radiolabeled VEGF165 to recombinant receptors and to cultured cells expressing only VEGFR-2 (KDR) or NRP-1. Antiangiogenic activity of the peptide was tested in vitro in tubulogenesis assays and in vivo in nude mice xenotransplanted in fat-pad with breast cancer MDA-MB-231 cells. Tumor volumes, vascularity and proliferation indices were determined. The selected peptide, ATWLPPR, inhibited the VEGF165 binding to NRP-1 but not to tyrosine kinase receptors, VEGFR-1 (flt-1) and KDR; nor did it bind to heparin. It diminished the VEGF-induced human umbilical vein endothelial cell proliferation and tubular formation on Matrigel and in co-culture with fibroblasts. Administration of ATWLPPR to nude mice inhibited the growth of MDA-MB-231 xenografts, and reduced blood vessel density and endothelial cell area but did not alter the proliferation indices of the tumor. In conclusion, ATWLPPR, a previously identified KDR-interacting peptide, was shown to inhibit the VEGF165 interactions with NRP-1 but not with KDR and to decrease the tumor angiogenesis and growth, thus validating, in vivo, NRP-1 as a possible target for antiangiogenic and antitumor agents.  相似文献   

15.
Cigarette smoke is the major risk factor associated with the development of chronic obstructive pulmonary disease and alters expression of proteolytic enzymes that contribute to disease pathology. Previously, we reported that smoke exposure leads to the induction of matrix metalloproteinase-1 (MMP-1) through the activation of ERK1/2, which is critical to the development of emphysema. To date, the upstream signaling pathway by which cigarette smoke induces MMP-1 expression has been undefined. This study demonstrates that cigarette smoke mediates MMP-1 expression via activation of the TLR4 signaling cascade. In vitro cell culture studies demonstrated that cigarette smoke-induced MMP-1 was regulated by TLR4 via MyD88/IRAK1. Blockade of TLR4 or inhibition of IRAK1 prevented cigarette smoke induction of MMP-1. Mice exposed to acute levels of cigarette smoke exhibited increased TLR4 expression. To further confirm the in vivo relevance of this signaling pathway, rabbits exposed to acute cigarette smoke were found to have elevated TLR4 signaling and subsequent MMP-1 expression. Additionally, lungs from smokers exhibited elevated TLR4 and MMP-1 levels. Therefore, our data indicate that TLR4 signaling, through MyD88 and IRAK1, plays a predominant role in MMP-1 induction by cigarette smoke. The identification of the TLR4 pathway as a regulator of smoke-induced protease production presents a series of novel targets for future therapy in chronic obstructive pulmonary disease.  相似文献   

16.
17.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

18.
C-reactive protein (CRP) is associated with cardiovascular disease. However, its biological functions for the vascular system are largely unknown. The objective of this study was to determine whether CRP could affect endothelial cell proliferation and expression of VEGF receptors (VEGFRs) and/or neuropilins. Human coronary artery endothelial cells (HCAECs) treated with CRP showed a significant reduction of mRNA levels of VEGFR-2, VEGFR-3, NRP-1, and NRP-2 by 34%, 63%, 41%, and 43%, respectively, as compared to untreated control cells (p < 0.05) by real-time PCR analysis. In addition, VEGF165-induced cell proliferation was determined by [3H]thymidine incorporation and MTS assay as well as capillary-like tube formation on Matrigel. HCAECs pretreated with CRP significantly decreased VEGF165-induced [3H]thymidine incorporation by 73%, MTS absorbance by 44%, and capillary-like tube formation by 54% as compared to CRP-untreated cells (p < 0.05). These data demonstrate that CRP significantly attenuates VEGF165-induced HCAEC proliferation and capillary-like tube formation through downregulation of expression of VEGFRs and NRPs. This study suggests a new molecular mechanism underlying the adverse effect of CRP on the vascular system.  相似文献   

19.
Mounting evidence indicates that signaling via VEGF receptors (VEGFRs) extends beyond blood vessel formation. Recently, VEGFRs are also found to be constitutively expressed in keratinocytes and epidermal appendages. Here, we show that the expression of VEGFRs (including VEGFR-1, VEGFR-2, and NRP-1) was significantly enhanced by moderate dose of ultraviolet B (UVB) in normal human keratinocytes and epidermis. The elevated expression of VEGFRs by UVB was independent of autocrine stimulation by their natural ligand, VEGF, but mainly mediated through hypoxia and oxidative stress. Moderate dose UVB also promoted tyrosine phosphorylation of VEGFR-1 and VEGFR-2, this effect was again VEGF independent. Both α and δ isoforms of protein kinase C (PKC) were required for UVB-induced phosphorylation of VEGFR-1, but only the δ isoform was required for VEGFR-2 phosphorylation. The phosphorylation of VEGFRs or isoforms of PKC was completely inhibited by PP2, a specific inhibitor for Src family kinases (SFKs), indicating that SFKs are upstream of PKC and VEGFRs. Moderate dose UVB-induced VEGF exerted an anti-apoptotic effect for keratinocytes, whereas high dose UVB-induced VEGF played as an inflammatory factor. Of note, neutralization of VEGFR-2 but not VEGFR-1 exacerbated UVB-induced cell death and reduced survival of keratinocytes. Furthermore, VEGFR-2 neutralization inhibited the activation of ERK1/2 and Akt by UVB, suggesting that VEGFR-2 signaling was involved in the pro-survival mechanism via ERK1/2 and PI3-K/Akt pathway. Taken together, we demonstrate for the first time that VEGFR-2 signaling is activated and promotes survival of keratinocytes under moderate dose of UVB irradiation.  相似文献   

20.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号