首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.  相似文献   

2.
The effects of cigarette smoke on the metabolism of exogenous PGE2 and PGF were investigated in isolated rat and hamster lungs. When isolated lungs from animals were ventilated with cigarette smoke during pulmonary infusion of 100 nmol of PGE2 or PGF, the amounts of the 15-keto-metabolites in the perfusion effluent were decreased. Pre-exposure of animals to cigarette smoke daily for 3 weeks did not change the metabolism of PGE2 when the lungs were ventilated with air. Cigarette smoke ventilation of lungs from pre-exposed animals caused, however, a similar decrease in the metabolism of PGE2 as in animals not previously exposed to smoke. After pulmonary injection of 10 nmol of 14C-PGE2 the radioactivity appeared more rapidly in the effluent during cigarette smoke ventilation suggesting inhibition of the PGE2 uptake mechanism. In rat lungs pulmonary vascular pressor responses to PGE2 and PGF were inhibited by smoke ventilation.  相似文献   

3.
4.
5.
The two most abundant secreted isoforms of vascular endothelial growth factor A (VEGF(165) and VEGF(121)) are formed as a result of differential splicing of the VEGF-A gene. VEGF(165) and VEGF(121) share similar affinities at the isolated VEGF receptor (VEGFR)-2 but have been previously demonstrated to have differential ability to activate VEGFR-2-mediated effects on endothelial cells. Herein we investigate whether the recently described VEGF(165) isoform-specific receptor neuropilin-1 (Npn-1) is responsible for the difference in potency observed for these ligands. We demonstrate that although VEGFR-2 and Npn-1 form a complex, this complex does not result in an increase in VEGF(165) binding affinity. Therefore, the differential activity of VEGF(165) and VEGF(121) cannot be explained by a differential binding affinity for the complex. Using an antagonist that competes for VEGF(165) binding at the VEGFR-2.Npn-1 complex, we observe specific antagonism of VEGF(165)-meditated phosphorylation of VEGFR-2 without affecting the VEGF(121) response. These data indicate that the formation of the complex is responsible for the increased potency of VEGF(165) versus VEGF(121). Taken together, these data suggest a receptor-clustering role for Npn-1, as opposed to Npn-1 behaving as an affinity-converting subunit.  相似文献   

6.
Chung TW  Kim SJ  Choi HJ  Kim KJ  Kim MJ  Kim SH  Lee HJ  Ko JH  Lee YC  Suzuki A  Kim CH 《Glycobiology》2009,19(3):229-239
Angiogenesis is associated with growth, invasion, and metastasis of human solid tumors. Aberrant activation of endothelial cells and induction of microvascular permeability by a vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) signaling pathway is observed in pathological angiogenesis including tumor, wound healing, arthritis, psoriasis, diabetic retinopathy, and others. Here, we show that GM3 regulated the activity of various downstream signaling pathways and biological events through the inhibition of VEGF-stimulated VEGFR-2 activation in vascular endothelial cells in vitro. Furthermore, GM3 strongly blocked VEGF-induced neovascularization in vivo, in models including the chick chorioallantoic membrane and Matrigel plug assay. Interestingly, GM3 suppressed VEGF-induced VEGFR-2 activation by blocking its dimerization and also blocked the binding of VEGF to VEGFR-2 through a GM3-specific interaction with the extracellular domain of VEGFR-2, but not with VEGF. Primary tumor growth in mice was inhibited by subcutaneous injection of GM3. Immunohistochemical analyses showed GM3 inhibition of angiogenesis and tumor cell proliferation. GM3 also resulted in the suppression of VEGF-stimulated microvessel permeability in mouse skin capillaries. These results suggest that GM3 inhibits VEGFR-2-mediated changes in vascular endothelial cell function and angiogenesis, and might be of value in anti-angiogenic therapy.  相似文献   

7.
8.
The vascular endothelial growth factor (VEGF) family of cytokines is involved in the maintenance of existing adult blood vessels as well as in angiogenesis, the sprouting of new vessels. To study the proangiogenic activation of VEGF receptors (VEGFRs) by VEGF family members in skeletal muscle, we develop a computational model of VEGF isoforms (VEGF(121), VEGF(165)), their cell surface receptors, and the extracellular matrix in in vivo tissue. We build upon our validated model of the biochemical interactions between VEGF isoforms and receptor tyrosine kinases (VEGFR-1 and VEGFR-2) and nonsignaling neuropilin-1 coreceptors in vitro. The model is general and could be applied to any tissue; here we apply the model to simulate the transport of VEGF isoforms in human vastus lateralis muscle, which is extensively studied in physiological experiments. The simulations predict the distribution of VEGF isoforms in resting (nonexercising) muscle and the activation of VEGFR signaling. Little of the VEGF protein in muscle is present as free, unbound extracellular cytokine; the majority is bound to the cell surface receptors or to the extracellular matrix. However, interstitial sequestration of VEGF(165) does not affect steady-state receptor binding. In the absence of neuropilin, VEGF(121) and VEGF(165) behave similarly, but neuropilin enhances the binding of VEGF(165) to VEGFR-2. This model is the first to study VEGF tissue distribution and receptor activation in human muscle, and it provides a platform for the design and evaluation of therapeutic approaches.  相似文献   

9.
Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR-family proteins consist of VEGFR-1/Flt-1, VEGFR-2/KDR/Flk-1, and VEGFR-3/Flt-4. Among these, VEGFR-2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1-3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR-specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR-2 tyrosine kinase, ZM323881 (5-[[7-(benzyloxy) quinazolin-4-yl]amino]-4-fluoro-2-methylphenol), to explore the role of VEGFR-2 in endothelial cell function. Consistent with its reported effects on VEGFR-2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR-2, but not of VEGFR-1, epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR-1 and VEGFR-2, but not VEGFR-3, in the absence or presence of ZM323881. Inhibition of VEGFR-2 blocked activation of extracellular regulated-kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR-1-specific ligand, placental growth factor (PIGF). Inhibition of VEGFR-2 also perturbed VEGF-induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor-2 inhibition also reversed VEGF-stimulated phosphorylation of CrkII and its Src homology 2 (SH2)-binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR-2 thus blocked all VEGF-induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR-2 is critical for VEGF signaling and/or that VEGFR-2 may function in a heterodimer with VEGFR-1 in human vascular endothelial cells.  相似文献   

10.
Epidemiological studies have shown that cigarette smoke, an oxidant agent, is a risk factor for the development of diabetic nephropathy (DN), in which pathogenesis transforming growth factor beta(1) (TGFbeta(1)) plays a key role. In our experimental model we exposed mesangial cell cultures to cigarette smoke concentrate (CSC) to study the effect of smoking on the pathogenesis of DN. Thus, we analyzed the effect of CSC on TGFbeta(1) and lipid peroxidation (8-epi-PGF(2alpha)) in rat mesangial cells. Furthermore, since the protein kinase C (PKC) pathway appears to be a key factor for the enhanced production of TGFbeta(1), we also analyzed the effect of the selective PKCbeta inhibitor LY379196 on TGFbeta(1) response to CSC. CSC induced an increase of both TGFbeta(1) and 8-epi-PGF(2) compared to basal conditions (5 mM glucose). The CSC-induced increase in TGFbeta(1) secretion was significantly suppressed by LY379196. These data suggest that smoking could increase TGFbeta(1) production, probably due to oxidative stress and PKCbeta activation. This finding supports the concept that smoking is a risk factor for DN development.  相似文献   

11.
12.
Claudinon J  Monier MN  Lamaze C 《Biochimie》2007,89(6-7):735-743
Interferons (IFNs) and their receptors (IFN-Rs) play fundamental roles in a multitude of biological functions. Many articles and reviews emphasize that the JAK/STAT machinery is obligatory for relay of the information transmitted by IFNs after binding to their cognate receptors at the plasma membrane. In contrast, very few studies have addressed the endocytosis and the intracellular trafficking of IFN-Rs, the immediate step following IFN binding. However, recent findings have shed light on the importance of IFN-R sorting and trafficking in the control of IFN signaling. Thus, IFN-Rs can be included in the growing family of signaling receptors for which regulation of biological activity critically involves endocytosis and trafficking.  相似文献   

13.
The fibrinolytic system is known to play an important role in the protection of lung architecture and function. This study investigated the effects on lungs of inhibiting the fibrinolytic system using tranexamic acid (TXA). Thirty cats were used, 15 experimental and 15 control. TXA was administered intravenously to the experimental animals for 3 h at 200 mg/kg (acute) and 7 days at 100 mg/kg (chronic). Blood samples were obtained from the carotid artery. The acute dose cats were sacrificed at 3 h and 24 h and the chronic dose cats at 8 days. Samples of inflated and fixed lung were examined morphologically and their collagen contents were determined. Fibrinolytic activity in blood samples was determined by fibrinogen degradation products levels, fibrin plate lytic area diameter, and the euglobulin lysis time. Hyperemia, lung interstitial oedema, haemorrhaging, inflammatory cell infiltration, pneumocyte type II cell proliferation, thrombosis and emphysema-related changes, characterized by enlargement of air spaces accompanied by destruction of alveolar walls, were observed in experimental cats group. None of these alterations except hyperemia and lung interstitial oedema were observed in two control animals. Electron microscopy results revealed oedema fluid in the interstitium, proliferation of pneumocyte type II cells, thickening of the alveolar septa and presence of marked amounts of collagen. Vacuoles were seen in the capillary endothelial cells. Elastic tissue was observed as elastic masses and partly disrupted, although elastic fibers were not prominent in all parts of the interstitium. Collagen content in the chronic dose experimental group was significantly higher than in all control and acute dose experimental groups. The inhibition of fibrinolytic system appears to have caused the emphysematous alterations, alveolar wall destruction and collagen accumulation possibly by causing microthromboses leading to mechanical blockage-ischemic changes, or by causing secondary fibrinolysis as a result of fibrin degradation products affecting local plasminogen activators and proteases. An injury-repair process also appears to have occurred.  相似文献   

14.
Pulmonary emphysema in chronic obstructive pulmonary disease (COPD) is characterized by the destruction of the alveolar walls leading to permanent enlargement of distal respiratory air spaces. A major causal factor is cigarette smoking, which produces conditions of chronic oxidative stress within the lungs. At a cellular level, increased macrophage accumulation and retention within the alveolar interstitial spaces is pivotal to the development of emphysema. To date it has been unclear as to the underlying mechanisms relating chronic oxidative stress to macrophage accumulation and retention. Our study was initiated to ascertain the role of modification of extracellular matrix proteins with cigarette smoke and products of lipid peroxidation on macrophage adhesion and activation. Increased numbers of macrophages were seen adhering to cigarette smoke-modified collagen IV as compared to unmodified collagen, where little or no adherent macrophages were observed. Similar observations were made when collagen was modified with either acrolein or 4-hydroxy-2-nonenal. Adhesion could be blocked with either fucoidan or a monoclonal antibody against the Type A macrophage scavenger receptor. Also, modified collagen triggered both oxidative burst and MCP-1 release in macrophages. These results, therefore, highlight a potential mechanism by which oxidative stress through the production of reactive carbonyls promotes macrophage accumulation, retention, and activation, independently of other proinflammatory stimuli. The implications of this for the development of emphysema in COPD are discussed.  相似文献   

15.
Neoangiogenesis is a significant event in a cascade of growth and progression of solid tumors. Assessment of the tissue expression and measurement of the concentrations of angiogenic and antiangiogenic factors, contributing to this process, in body fluids, can be used not only for an early diagnosis of tumors and their staging but also as an important parameter of treatment efficiency evaluation. The aim of this study is to evaluate the concentrations of crucial angiogenic cytokine VEGF and its soluble receptors in peripheral blood of patients with benign and malignant thyroid tumors. The study comprised 35 patients with thyroid cancer and 10 patients with follicular neoplasm, both diagnosed by means of ultrasound-guided fine-needle aspiration biopsy. For these patients surgical treatment was instituted. The examined angiogenic factors were determined preoperatively and 4 weeks after the surgical procedures. The results were compared with the control group which comprised 10 healthy individuals. Analysing obtained results, we demonstrated high VEGF concentrations and low soluble VEGF receptor concentrations in patients with benign and malignant thyroid tumors. This fact confirms a vital role of VEGF in angiogenesis of thyroid tumors and a hypothetical antiangiogenic activity of its soluble receptors. Disequilibrium of the above-mentioned angiogenic factor concentrations is probably essential for the growth and progression of benign and malignant thyroid tumors.  相似文献   

16.
17.
We reported previously that normal Huntingtin is associated with epidermal growth factor receptor (EGF) signaling complex (Liu, Y. F., Deth, C. R., and Devys, D. (1997) J. Biol. Chem. 272, 8121-8124). To investigate the potential role of normal and polyglutamine-expanded Huntingtin in the regulation of growth factor receptor-mediated cellular signaling and biological function, we stably transfected full-length Huntingtin containing 16, 48, or 89 polyglutamine repeats into PC12 cells where cellular signaling mechanisms, mediated by nerve growth factor (NGF) or EGF receptors, are well characterized. Expression of polyglutamine-expanded Huntingtin, but not normal Huntingtin, leads to a dramatic morphological change. In clones carrying the mutated Huntingtin, both NGF and EGF receptor-mediated activation of mitogen-activated protein kinase, c-Jun N-terminal kinase, and Akt are significantly attenuated, and NGF receptor-mediated neurite outgrowth is blocked. Co-immunoprecipitation studies show that the associations of NGF or EGF receptors with growth factor receptor-binding protein 2 (Grb2) and phosphoinositide 3-kinase are significantly inhibited. NGF-induced tyrosine phosphorylation of NGF receptors (TrkA) is also consistently suppressed. Our data demonstrate that polyglutamine-expanded Huntingtin disrupts cellular signaling mediated by both EGF and NGF receptors in PC12 cells. It is known that Huntington's disease patients exhibit an extremely low incidence of a variety of cancers and are deficient in glucose metabolism. Thus, our results may reflect an important molecular mechanism for the pathogenesis of the disease.  相似文献   

18.
Regulators of G-protein signaling (RGS) proteins act directly on Galpha subunits to increase the rate of GTP hydrolysis and to terminate signaling. However, the mechanisms involved in determining their specificities of action in cells remain unclear. Recent evidence has raised the possibility that RGS proteins may interact directly with G-protein-coupled receptors to modulate their activity. By using biochemical, fluorescent imaging, and functional approaches, we found that RGS2 binds directly and selectively to the third intracellular loop of the alpha1A-adrenergic receptor (AR) in vitro, and is recruited by the unstimulated alpha1A-AR to the plasma membrane in cells to inhibit receptor and Gq/11 signaling. This interaction was specific, because RGS2 did not interact with the highly homologous alpha1B- or alpha1D-ARs, and the closely related RGS16 did not interact with any alpha1-ARs. The N terminus of RGS2 was required for association with alpha1A-ARs and inhibition of signaling, and amino acids Lys219, Ser220, and Arg238 within the alpha1A-AR i3 loop were found to be essential for this interaction. These findings demonstrate that certain RGS proteins can directly interact with preferred G-protein-coupled receptors to modulate their signaling with a high degree of specificity.  相似文献   

19.
Chronic obstructive pulmonary disease (COPD) is a major public health problem with increasing prevalence worldwide. The primary aim of this study was to identify genes and gene ontologies associated with COPD severity. Gene expression profiling was performed on total RNA extracted from lung tissue of 18 former smokers with COPD. Class comparison analysis on mild (n = 9, FEV1 80–110% predicted) and moderate (n = 9, FEV1 50–60% predicted) COPD patients identified 46 differentially expressed genes (p<0.01), of which 14 genes were technically confirmed by quantitative real-time-PCR. Biological replication in an independent test set of 58 lung samples confirmed the altered expression of ten genes with increasing COPD severity, with eight of these genes (NNMT, THBS1, HLA-DPB1, IGHD, ETS2, ELF1, PTGDS and CYRBD1) being differentially expressed by greater than 1.8 fold between mild and moderate COPD, identifying these as candidate determinants of COPD severity. These genes belonged to ontologies potentially implicated in COPD including angiogenesis, cell migration, proliferation and apoptosis. Our secondary aim was to identify gene ontologies common to airway obstruction, indicated by impaired FEV1 and KCO. Using gene ontology enrichment analysis we have identified relevant biological and molecular processes including regulation of cell-matrix adhesion, leukocyte activation, cell and substrate adhesion, cell adhesion, angiogenesis, cell activation that are enriched among genes involved in airflow obstruction. Exploring the functional significance of these genes and their gene ontologies will provide clues to molecular changes involved in severity of COPD, which could be developed as targets for therapy or biomarkers for early diagnosis.  相似文献   

20.
Abstract: Vascular endothelial growth factor (VEGF) is an important angiogenic factor in the female reproductive tract. It binds to cell surface through ligand-stimulatable tyrosine kinase receptors, the most important being VEGFR-1 (flt-1) and VEGFR-2 (flk-1). The broad ligament of the uterus is a dynamic organ consisting of specialized complexes of blood vessels connected functionally to the uterus, oviduct and ovary. Endothelial cells form an inner coating of the vessel walls and thus they stay under the influence of various modulators circulating in blood including ovarian steriods involved in developmental changes in the female reproductive system. The aim of the present study was to immunolocalize VEGF and its two receptors: VEGFR-1 and VEGFR-2 in the broad ligament of the uterus in the area of vascular subovarian plexus during different phases of the estrous cycle in pig and to determine the correlation between immunoreactivity of the investigated factors and phases of the estrous cycle. The study was performed on cryostat sections of vascular subovarian plexus stained immunohistochemically by ABC method. Specific polyclonal antibodies: anti-VEGF, anti-VEGFR-1 and anti-VEGFR-2 were used. Data were subjected to one-way analysis of variance. Our study revealed the presence of VEGF and its receptors in endothelial and smooth muscle cells of VSP arteries. All agents displayed phase-related differences in immunoreactivity suggesting the modulatory effect of VEGF, VEGFR-1 and VEGFR-2 on the arteries of the VSP in the porcine broad ligament of the uterus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号