首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Premenopausal women are much less prone to develop cardiovascular disease than men of similar age, but this advantage no longer applies after menopause. We previously found that male mice have a significantly higher rate of cardiac rupture than females during the acute phase of myocardial infarction (MI); however, the effects of sexual hormones on chronic remodeling are unknown. We hypothesized that estrogen (E) may protect the heart from chronic remodeling and deterioration of function post-MI, whereas testosterone (T) may have adverse effects. Mice (4 wk old) of both genders were divided into four groups: female groups consisted of 1) sham ovariectomy (S-Ovx) + placebo (P) (S-Ovx + P), 2) S-Ovx + T, 3) Ovx + P, and 4) Ovx + T; and male groups consisted of 1) sham castration (S-Cas)+ P (S-Cas + P), 2) S-Cas + 17beta-estradiol (E), 3) Cas + P, and 4) Cas + E. MI was induced 6 wk later. Echocardiography was performed to assess cardiac function and left ventricular dimensions (LVD). Myocyte cross-sectional area (MCSA) was measured at the end of the study. In females, both testosterone and ovariectomy decreased ejection fraction (EF) and increased LVD, and when combined they aggravated cardiac function and remodeling further. Testosterone significantly increased MCSA. In males, castration or estrogen increased EF and reduced LVD, whereas castration significantly reduced MCSA. Our data suggest that estrogen prevents deterioration of cardiac function and remodeling after MI, but testosterone worsens cardiac dysfunction and remodeling and has a pronounced effect when estrogen levels are reduced.  相似文献   

2.
Cavasin MA  Tao Z  Menon S  Yang XP 《Life sciences》2004,75(18):2181-2192
There are conflicting data about gender differences in cardiac function after myocardial infarction (MI), including cardiac rupture and mortality. Using a mouse model of MI, we recently found that the cardiac rupture rate during the first week after MI was significantly lower in females than in males, suggesting that females have attenuated structural remodeling. Thus in this study, we attempted to determine whether: a) females have attenuated remodeling and faster healing during the early phase post-MI, and b) females have better cardiac function and outcome during the chronic phase compared to males. MI was induced in 12-week-old male and female C57BL/6J mice. Signs of early remodeling, including cardiac rupture, infarct expansion, inflammatory response, and collagen deposition, were studied during the first 2 weeks post-MI. Left ventricular remodeling and function were followed for 12 weeks post-MI. We found that males had a higher rate of cardiac rupture, occurring mainly at 3 to 5 days of MI and associated with a higher infarct expansion index. Neutrophil infiltration at the infarct border was more pronounced in males than females during the first days of MI, which were also characterized by increased MMP activity. However, the number of infiltrating macrophages was significantly higher in females at day 4. During the chronic phase post-MI, males had significantly poorer LV function, more prominent dilatation and significant myocyte hypertrophy compared to females. In conclusion, males have delayed myocardial healing, resulting in cardiac rupture, and the survivors have poorer cardiac function and pronounced maladaptive remodeling, whereas females show a better outcome during the development of HF.  相似文献   

3.
Tao ZY  Cavasin MA  Yang F  Liu YH  Yang XP 《Life sciences》2004,74(12):1561-1572
We previously found that male mice with myocardial infarction (MI) had a high rate of cardiac rupture, which generally occurred at 3 to 5 days after MI. Since matrix metalloproteinases (MMPs) play an important role in infarct healing, tissue repair and extracellular matrix (ECM) remodeling post-MI, we studied the temporal relationship of MMP expression and inflammatory response to cardiac rupture after acute MI. Male C57BL/6J mice were subjected to MI (induced by ligating the left anterior descending coronary artery) and killed 1, 2, 4, 7 or 14 days after MI. MMP-2 and MMP-9 activity in the heart were measured by zymography. Collagen content was measured by hydroxyproline assay. We found that after MI, MMP-9 activity increased as early as 1 day and reached a maximum by 2-4 days, associated with a similar increase in neutrophil and macrophage infiltration in the infarct area. MMP-2 started to increase rapidly within 4 days, reaching a maximum by 7 days and remaining high even at 14 days. Intense macrophage infiltration appeared by 4 days after MI and then gradually decreased within 7 to 14 days. Collagen content was unchanged until 4 days after MI, at which point it increased and remained high thereafter. Our data suggest that in mice, overexpression of MMP-2 and MMP-9 (possibly expressed mainly by neutrophils and macrophages) may lead to excessive ECM degradation in the early phase of MI, impairing infarct healing and aggravating early remodeling which in turn causes cardiac rupture.  相似文献   

4.

Background

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are upregulated after myocardial infarction (MI) in both humans and mice. They modulate inflammation and the extracellular matrix, and could therefore be important for healing and remodeling after MI. However, the function of TWEAK after MI remains poorly defined.

Methods and results

Following ligation of the left coronary artery, mice were injected twice per week with a recombinant human serum albumin conjugated variant of TWEAK (HSA-Flag-TWEAK), mimicking the activity of soluble TWEAK. Treatment with HSA-Flag-TWEAK resulted in significantly increased mortality in comparison to the placebo group due to myocardial rupture. Infarct size, extracellular matrix remodeling, and apoptosis rates were not different after MI. However, HSA-Flag-TWEAK treatment increased infiltration of proinflammatory cells into the myocardium. Accordingly, depletion of neutrophils prevented cardiac ruptures without modulating all-cause mortality.

Conclusion

Treatment of mice with HSA-Flag-TWEAK induces myocardial healing defects after experimental MI. This is mediated by an exaggerated neutrophil infiltration into the myocardium.  相似文献   

5.
6.
Cardiac rupture is more prevalent in elderly patients with first onset of acute myocardial infarct (MI), but the mechanism remains unexplored. We investigated the differences in the incidence of cardiac rupture and early left ventricular (LV) remodeling following coronary artery ligation between old (12-mo) and young (3-mo) C57Bl/6 male mice and explored responsible mechanisms. The incidence of rupture within 1 wk after MI was significantly higher in old than in young mice (40.7 vs. 18.3%, P = 0.013) despite a similar infarct size in both age groups. Old mice dying of rupture had more severe infarct expansion than young counterparts. Echocardiography and catheterization at day 7 revealed more profound LV chamber dilatation and dysfunction as well as higher blood pressures in aged mice. At day 3 after MI immediately before the peak of rupture occurrence, we observed significantly higher content of type I and III collagen, a greater density of macrophage and neutrophil, and markedly enhanced mRNA expression of inflammatory cytokines in the infarcted myocardium in old than in young mice. Furthermore, a more dramatic increment of matrix metalloproteinase (MMP)-9 activity was found in old than in young infarcted hearts, in keeping with enhanced inflammatory response. Collectively, these results revealed that old mice had a higher risk of post-MI cardiac rupture despite a higher level of collagen content and cross-linking. Enhanced inflammatory response and subsequent increase in MMP-9 activity together with higher blood pressure are important factors responsible for the higher risk of cardiac rupture and more severe LV remodeling in the aged heart following acute MI.  相似文献   

7.
Matrix metalloproteinase-2 (MMP-2) is prominently overexpressed both after myocardial infarction (MI) and in heart failure. However, its pathophysiological significance in these conditions is still unclear. We thus examined the effects of targeted deletion of MMP-2 on post-MI left ventricular (LV) remodeling and failure. Anterior MI was produced in 10- to 12-wk-old male MMP-2 knockout (KO) and sibling wild-type (WT) mice by ligating the left coronary artery. By day 28, MI resulted in a significant increase in mortality in association with LV cavity dilatation and dysfunction. The MMP-2 KO mice had a significantly better survival rate than WT mice (56% vs. 85%, P < 0.05), despite a comparable infarct size (50 +/- 3% vs. 51 +/- 3%, P = not significant), heart rate, and arterial blood pressure. The KO mice had a significantly lower incidence of LV rupture (10% vs. 39%, P < 0.05), which occurred within 7 days of MI. The KO mice exerted less LV cavity dilatation and improved fractional shortening after MI by echocardiography. The LV zymographic MMP-2 level significantly increased in WT mice after coronary artery ligation; however, this was completely prevented in KO mice. In contrast, the increase in the LV zymographic MMP-9 level after MI was similar between KO and WT mice. MMP-2 activation is therefore considered to contribute to an early cardiac rupture as well as late LV remodeling after MI. The inhibition of MMP-2 activation may therefore be a potentially useful therapeutic strategy to manage post-MI hearts.  相似文献   

8.
Left ventricular (LV) remodeling, including cardiomyocyte necrosis, scar formation, LV geometric changes, and cardiomyocyte hypertrophy, contributes to cardiac dysfunction and mortality after myocardial infarction (MI). Although precise cellular signaling mechanisms for LV remodeling are not fully elucidated, G(q) protein-coupled receptor signaling pathway, including diacylglycerol (DAG) and PKC, are involved in this process. DAG kinase (DGK) phosphorylates DAG and controls cellular DAG levels, thus acting as a negative regulator of PKC and subsequent cellular signaling. We previously reported that DGK inhibited angiotensin II and phenylephrine-induced activation of the DAG-PKC signaling and subsequent cardiac hypertrophy. The purpose of this study was to examine whether DGK modifies LV remodeling after MI. Left anterior descending coronary artery was ligated in transgenic mice with cardiac-specific overexpression of DGKzeta (DGKzeta-TG) and wild-type (WT) mice. LV chamber dilatation (4.12 +/- 0.10 vs. 4.53 +/- 0.32 mm, P < 0.01), reduction of LV systolic function (34.8 +/- 8.3% vs. 28.3 +/- 4.8%, P < 0.01), and increases in LV weight (95 +/- 3.6 vs. 111 +/- 4.1 mg, P < 0.05) and lung weight (160 +/- 15 vs. 221 +/- 25 mg, P < 0.05) at 4 wk after MI were attenuated in DGKzeta-TG mice compared with WT mice. In the noninfarct area, fibrosis fraction (0.51 +/- 0.04, P < 0.01) and upregulation of profibrotic genes, such as transforming growth factor-beta1 (P < 0.01), collagen type I (P < 0.05), and collagen type III (P < 0.01), were blocked in DGKzeta-TG mice. The survival rate at 4 wk after MI was higher in DGKzeta-TG mice than in WT mice (61% vs. 37%, P < 0.01). In conclusion, these results demonstrate the first evidence that DGKzeta suppresses LV structural remodeling and fibrosis and improves survival after MI. DGKzeta may be a potential novel therapeutic target to prevent LV remodeling after MI.  相似文献   

9.
We examined the cardiac effects of chronic erythropoietin (EPO) therapy initiated 7 days after myocardial infarction (MI) in rats. A single high dose of EPO has been shown to reduce infarct size by preventing apoptosis when injected immediately after myocardial ischemia. The proangiogenic potential of EPO has also been reported, but the effects of chronic treatment with standard doses after MI are unknown. In this study, rats underwent coronary occlusion followed by reperfusion or a sham procedure. Infarcted rats were assigned to one of three treatment groups: 1) 0.75 microg/kg darbepoetin (MI+darb 0.75, n = 12); 2) 1.5 microg/kg darbepoetin (MI+darb 1.5, n = 12); 3) vehicle (MI+PBS, n = 16), once a week from day 7 postsurgery. Sham rats received the vehicle alone (n = 10). After 8 wk of treatment, the animals underwent echocardiography, left ventricular pressure-volume measurements, and peripheral blood endothelial progenitor cell (EPC) counting. MI size and capillary density in the border zone and the area at risk (AAR) were measured postmortem. The AAR was similar in the three MI groups. Compared with MI+PBS, the MI+darb 1.5 group showed a reduction in the MI-to-AAR ratio (20.8% vs. 38.7%; P < 0.05), as well as significantly reduced left ventricle dilatation and improved cardiac function. This reduction in post-MI remodeling was accompanied by increased capillary density (P < 0.05) and by a higher number of EPC (P < 0.05). Both darbepoetin doses increased the hematocrit, whereas MI+darb 0.75 did not increase EPC numbers or capillary density and had no functional effect. We found that chronic EPO treatment reduces MI size and improves cardiac function only at a dose that induces EPC mobilization in blood and that increases capillary density in the infarct border zone.  相似文献   

10.
After onset of myocardial infarction (MI), the left ventricle (LV) undergoes a continuum of molecular, cellular, and extracellular responses that result in LV wall thinning, dilatation, and dysfunction. These dynamic changes in LV shape, size, and function are termed cardiac remodeling. If the cardiac healing after MI does not proceed properly, it could lead to cardiac rupture or maladaptive cardiac remodeling, such as further LV dilatation and dysfunction, and ultimately death. Although the precise molecular mechanisms in this cardiac healing process have not been fully elucidated, this process is strictly coordinated by the interaction of cells with their surrounding extracellular matrix (ECM) proteins. The components of ECM include basic structural proteins such as collagen, elastin and specialized proteins such as fibronectin, proteoglycans and matricellular proteins. Matricellular proteins are a class of non-structural and secreted proteins that probably exert regulatory functions through direct binding to cell surface receptors, other matrix proteins, and soluble extracellular factors such as growth factors and cytokines. This small group of proteins, which includes osteopontin, thrombospondin-1/2, tenascin, periostin, and secreted protein, acidic and rich in cysteine, shows a low level of expression in normal adult tissue, but is markedly upregulated during wound healing and tissue remodeling, including MI. In this review, we focus on the regulatory functions of matricellular proteins during cardiac tissue healing and remodeling after MI.  相似文献   

11.
心梗后心肌重构过程中AT1A,AT2受体表达的变化   总被引:3,自引:0,他引:3  
Lu N  Tian DZ  Zhou L  Yao T  Zhu YC 《生理学报》2001,53(2):128-132
为探讨AT1,AT2受体在心肌重构演变过程中的作用,本实验应用免疫组化,电镜技术和图像分析方法,观察了大鼠心梗后心肌重构过程中非醒,AT1,AT2受体表达的动态变化,结果显示,心梗术后3d,电镜显示非梗塞区心肌细胞肌原纤维横纹消失,线粒体肿胀,成纤维细胞增多,免疫组化显示AT1A受体在非梗塞区心肌组织表达明显升高(P<0.001),AT2受体表达无明显变化(P>0.05),心梗术后14天,可见心肌细胞肌原纤维模纹,心肌细胞间胶原纤维明显增多。同时AT1A受本在心肌的表达比心梗术后3天时减弱,但仍高于对照组(P<0.05),AT2受体表达明显增加(P<0.001),结果提示:心梗后非梗塞区心肌AT1A,AT2受体表达先后上调,可能参与介导心肌重构过程。  相似文献   

12.
Elevated serine elastase activity after myocardial infarction can contribute to remodeling associated with left ventricular dilatation and dysfunction. We therefore assessed the effects of overexpressing the selective serine elastase inhibitor elafin in transgenic mice in which a myocardial infarction was caused by ligation of the left anterior descending coronary artery (LAD). Elevated serine elastase activity was observed in nontransgenic littermates as early as 6 h after LAD ligation and persisted at 4 and 7 days but not in sham-operated or elafin-overexpressing transgenic mice. Myeloperoxidase activity (index of inflammatory cells) and matrix metalloproteinase 2 were also increased but only at 4 and 7 days and only in nontransgenic mice (P < 0.05 for both comparisons), and this increase correlated with inflammatory cell infiltration. Echocardiographic study at 4 days revealed indexes of diastolic dysfunction in nontransgenic versus elafin-overexpressing mice (P < 0.05). Morphometric and biochemical analyses at 28 days indicated impairment in cardiac performance, with greater scar thinning and infarct expansion in nontransgenic versus elafin transgenic littermates (P < 0.05 for all comparisons). Thus serine elastase inhibition appears to suppress inflammation, cardiac dilatation, and dysfunction after myocardial infarct.  相似文献   

13.
《Gender Medicine》2007,4(3):230-247
Background: It is well established that premenopausal women are protected from cardiovascular disease. This gender difference in favor of females is also demonstrated in animal studies. Our research group previously found that female mice had much lower incidence of cardiac rupture and mortality than did males during the acute phase of myocardial infarction (MI); however, the mechanisms responsible for such protection are not fully understood.Objective: The aim of this study was to determine whether the favorable cardiac effect observed in female mice with MI is due to an augmented healing process that includes less inflammation, reduced matrix degradation, and enhanced neovascularization.Methods: Twelve-week-old male and female C57BL/6J mice were subjected to MI by ligating the left anterior descending coronary artery and then euthanized at 1, 4, 7, or 14 days post-MI. Inflammatory cell infiltration and myofibroblast transformation, matrix metalloproteinase (MMP)-2 and MMP-9 activity, tissue inhibitor of metalloproteinase (TIMP)-I expression, and neovascularization were examined by immunohistochemistry, zymography, Western blot, and laser scanning confocal microscopy, respectively. Cardiac function was evaluated by echocardiography on day 14.Results: We found that: (1) neutrophil infiltration during the early phase of MI (1-4 days) was much lower in females than in males and was associated with lower MMP-9 activity and higher TIMP-1 protein expression, indicating less-exaggerated inflammation and extracellular matrix degradation in females; (2) myofibroblast transformation, as indicated by expression of α-smooth muscle actin, was significantly greater in females than in males at day 7 of MI (P < 0.05), indicating facilitated collagen deposition and scar formation; and (3) neovascularization (vascular area in the infarct border) was markedly increased in females, and was associated with better preserved cardiac function and less left ventricular dilatation.Conclusion: Our data suggest that less-exaggerated early inflammation and augmented reparative fibrotic response, indicated by enhanced myofibroblast transformation, may contribute greatly to low rupture rates in females during the acute and subacute phases of MI, whereas enhanced neovascularization may lead to better preserved cardiac function post-MI. (Gend Med.  相似文献   

14.
This study was conducted to examine the influence of acute streptozotocin‐induced diabetes on cardiac remodelling and function in mice subjected to myocardial infarction (MI) by coronary artery ligation. Echocardiography analysis indicated that diabetes induced deleterious cardiac functional changes as demonstrated by the negative differences of ejection fraction, fractional shortening, stroke volume, cardiac output and left ventricular volume 24 hrs after MI. Temporal analysis for up to 2 weeks after MI showed higher mortality in diabetic animals because of cardiac wall rupture. To examine extracellular matrix remodelling, we used fluorescent molecular tomography to conduct temporal studies and observed that total matrix metalloproteinase (MMP) activity in hearts was higher in diabetic animals at 7 and 14 days after MI, which correlated well with the degree of collagen deposition in the infarct area visualized by scanning electron microscopy. Gene arrays indicated temporal changes in expression of distinct MMP isoforms after 1 or 2 weeks after MI, particularly in diabetic mice. Temporal changes in cardiac performance were observed, with a trend of exaggerated dysfunction in diabetic mice up to 14 days after MI. Decreased radial and longitudinal systolic and diastolic strain rates were observed over 14 days after MI, and there was a trend towards altered strain rates in diabetic mouse hearts with dyssynchronous wall motion clearly evident. This correlated with increased collagen deposition in remote areas of these infarcted hearts indicated by Masson's trichrome staining. In summary, temporal changes in extracellular matrix remodelling correlated with exaggerated cardiac dysfunction in diabetic mice after MI.  相似文献   

15.
Calpain has been implicated in acute myocardial injury after myocardial infarction (MI). However, the causal relationship between calpain and post-MI myocardial remodeling has not been fully understood. This study examined whether deletion of Capn4, essential for calpain-1 and calpain-2 activities, reduces myocardial remodeling and dysfunction following MI, and if yes, whether these effects of Capn4 deletion are associated with NF-κB signaling and inflammatory responses in the MI heart. A novel mouse model with cardiomyocyte-specific deletion of Capn4 (Capn4-ko) was employed. MI was induced by left coronary artery ligation. Deficiency of Capn4 dramatically reduced the protein levels and activities of calpain-1 and calpain-2 in the Capn4-ko heart. In vivo cardiac function was relatively improved in Capn4-ko mice at 7 and 30 days after MI when compared with their wild-type littermates. Deletion of Capn4 reduced apoptosis, limited infarct expansion, prevented left ventricle dilation, and reduced mortality in Capn4-ko mice. Furthermore, cardiomyocyte cross-sectional areas and myocardial collagen deposition were significantly attenuated in Capn4-ko mice, which were accompanied by down-regulation of hypertrophic genes and profibrotic genes. These effects of Capn4 knock-out correlated with restoration of IκB protein and inhibition of NF-κB activation, leading to suppression of proinflammatory cytokine expression and inflammatory cell infiltration in the Capn4-ko heart after MI. In conclusion, deficiency of Capn4 reduces adverse myocardial remodeling and myocardial dysfunction after MI. These effects of Capn4 deletion may be mediated through prevention of IκB degradation and NF-κB activation, resulting in inhibition of inflammatory responses.  相似文献   

16.
Myocardial infarction (MI) results in left ventricular remodeling (e.g., ventricular hypertrophy, dilatation, and fibrosis). Fibrosis contributes to increased myocardial stiffening, impaired ventricular filling and function, and reduced cardiac output. Adenylyl cyclase (AC) expression and activity are reduced in animal models of heart failure. Stimulation of AC can inhibit extracellular matrix production in isolated cardiac fibroblasts; however, a role for reduced AC expression and activity in fibrosis associated with cardiac remodeling after chronic MI has never been determined. We tested the hypothesis that AC expression and activity are reduced in cardiac fibroblasts after chronic (18 wk) MI. Rats underwent coronary artery ligation or sham surgery (control), and echocardiography was used to assess left ventricular remodeling 1, 3, 5, 7, 10, 12, and 18 wk after surgery. Cardiac fibroblasts were isolated from the noninfarcted myocardium and compared for differences in AC activity and collagen synthesis. End-diastolic dimension was increased [control: 0.76 +/- 0.02 cm and MI: 1.0 +/- 0.02 cm (means +/- SE), P < 0.001] and fractional shortening was decreased (control: 44 +/- 2% and MI: 17 +/- 2%, P < 0.001) in MI compared with control rats. Basal and forskolin-stimulated cAMP production were decreased by 90% and 93%, respectively, and AC5/6 expression was decreased 39% in fibroblasts isolated from MI rats compared with sham controls. Serum-stimulated collagen production was increased twofold and forskolin-mediated inhibition of collagen synthesis was reduced in fibroblasts from MI rats compared with controls. Our data demonstrate that AC expression and activity are reduced and collagen production is increased in cardiac fibroblasts of rats after MI.  相似文献   

17.

Background

Von Willebrand A domain Related Protein (WARP), is a recently identified extracellular matrix protein. Based upon its involvement in matrix biology and its expression in the heart, we hypothesized that WARP regulates cardiac remodeling processes in the post-infarct healing process.

Methods and results

In the mouse model of myocardial infarction (MI), WARP expression increased in the infarcted area 3-days post-MI. In the healthy myocardium WARP localized with perlecan in the basement membrane, which was disrupted upon injury. In vitro studies showed high expression of WARP by cardiac fibroblasts, which further increases upon TGFβ stimulation. Furthermore, WARP expression correlated with aSMA and COL1 expression, markers of fibroblast to myofibroblast transition, in vivo and in vitro. Finally, WARP knockdown in vitro affected extra- and intracellular basic fibroblast growth factor production in myofibroblasts. To investigate the function for WARP in infarction healing, we performed an MI study in WARP knockout (KO) mice backcrossed more than 10 times on an Australian C57Bl/6-J background and bred in-house, and compared to wild type (WT) mice of the same C57Bl/6-J strain but of commercial European origin. WARP KO mice showed no mortality after MI, whereas 40% of the WT mice died due to cardiac rupture. However, when WARP KO mice were backcrossed on the European C57Bl/6-J background and bred heterozygous in-house, the previously seen protective effect in the WARP KO mice after MI was lost. Importantly, comparison of the cardiac response post-MI in WT mice bred heterozygous in-house versus commercially purchased WT mice revealed differences in cardiac rupture.

Conclusion

These data demonstrate a redundant role for WARP in the wound healing process after MI but demonstrate that the continental/breeding/housing origin of mice of the same C57Bl6-J strain is critical in determining the susceptibility to cardiac rupture and stress the importance of using the correct littermate controls.  相似文献   

18.
为探讨AT1、AT2 受体在心肌重构演变过程中的作用 ,本实验应用免疫组化、电镜技术和图像分析方法 ,观察了大鼠心梗后心肌重构过程中非梗塞区AT1、AT2 受体表达的动态变化。结果显示 ,心梗术后 3d ,电镜显示非梗塞区心肌细胞肌原纤维横纹消失 ,线粒体肿胀 ,成纤维细胞增多 ,免疫组化显示AT1A受体在非梗塞区心肌组织表达明显升高 (P <0 0 0 1) ,AT2 受体表达无明显变化 (P >0 0 5 ) ;心梗术后 14d ,可见心肌细胞肌原纤维横纹 ,心肌细胞间胶原纤维明显增多 ,同时AT1A受体在心肌的表达比心梗术后 3d时减弱 ,但仍高于对照组 (P <0 0 5 ) ,AT2 受体表达明显增加 (P <0 0 0 1)。结果提示 :心梗后非梗塞区心肌AT1A、AT2 受体表达先后上调 ,可能参与介导心肌重构过程  相似文献   

19.
Prevention of adverse cardiac remodeling after myocardial infarction (MI) remains a therapeutic challenge. Angiotensin-converting enzyme inhibitors (ACE-I) are a well-established first-line treatment. ACE-I delay fibrosis, but little is known about their molecular effects on cardiomyocytes. We investigated the effects of the ACE-I delapril on cardiomyocytes in a mouse model of heart failure (HF) after MI. Mice were randomly assigned to three groups: Sham, MI, and MI-D (6 weeks of treatment with a non-hypotensive dose of delapril started 24h after MI). Echocardiography and pressure-volume loops revealed that MI induced hypertrophy and dilation, and altered both contraction and relaxation of the left ventricle. At the cellular level, MI cardiomyocytes exhibited reduced contraction, slowed relaxation, increased diastolic Ca2+ levels, decreased Ca2+-transient amplitude, and diminished Ca2+ sensitivity of myofilaments. In MI-D mice, however, both mortality and cardiac remodeling were decreased when compared to non-treated MI mice. Delapril maintained cardiomyocyte contraction and relaxation, prevented diastolic Ca2+ overload and retained the normal Ca2+ sensitivity of contractile proteins. Delapril maintained SERCA2a activity through normalization of P-PLB/PLB (for both Ser16- PLB and Thr17-PLB) and PLB/SERCA2a ratios in cardiomyocytes, favoring normal reuptake of Ca2+ in the sarcoplasmic reticulum. In addition, delapril prevented defective cTnI function by normalizing the expression of PKC, enhanced in MI mice. In conclusion, early therapy with delapril after MI preserved the normal contraction/relaxation cycle of surviving cardiomyocytes with multiple direct effects on key intracellular mechanisms contributing to preserve cardiac function.  相似文献   

20.
After myocardial infarction (MI), the left ventricle (LV) undergoes ventricular remodeling characterized by progressive global dilation, infarct expansion, and compensatory hypertrophy of the noninfarcted myocardium. Little attention has been given to the response of remodeling myocardium to additional hemodynamic overload. Studies have indicated that gender may influence remodeling and the response to both MI and hemodynamic overload. We therefore determined 1) structural and function consequences of superimposing hemodynamic overload (systemic hypertension) on remodeling myocardium after a MI and 2) the potential influence of gender on this remodeling response. Male and female Dahl salt-sensitive and salt-resistant rats underwent coronary ligation, resulting in similar degrees of MI. One week post-MI, all rats were placed on a high-salt diet. Four groups were then studied 4 wk after initiation of high-salt feeding: MI female, MI female + hypertension, MI male, and MI male + hypertension. Hypertension-induced pressure overload resulted in additional comparable degrees of myocardial hypertrophy in both females and males. In females, hypertension post-MI resulted in concentric hypertrophy with no additional cavity dilation and no measurable scar thinning. In contrast, in males, hypertension post-MI resulted in eccentric hypertrophy, further LV cavity dilation, and scar thinning. Physiologically, concentric hypertrophy in post-MI hypertensive females resulted in elevated contractile function, whereas eccentrically hypertrophied males had no such increase. Female gender influences favorably the remodeling and physiological response to hemodynamic overload after large MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号