首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although administration of 17beta-estradiol (estrogen) following trauma-hemorrhage attenuates the elevation of cytokine production and mitogen-activated protein kinase (MAPK) activation in epidermal keratinocytes, whether the salutary effects of estrogen are mediated by estrogen receptor (ER)-alpha or ER-beta is not known. To determine which estrogen receptor is the mediator, we subjected C3H/HeN male mice to trauma-hemorrhage (2-cm midline laparotomy and bleeding of the animals to a mean blood pressure of 35 mmHg and maintaining that pressure for 90 min) followed by resuscitation with Ringer's lactate (four times the shed blood volume). At the middle of resuscitation we subcutaneously injected ER-alpha agonist propyl pyrazole triol (PPT; 5 microg/kg), ER-beta agonist diarylpropionitrile (DPN; 5 microg/kg), estrogen (50 microg/kg), or ER antagonist ICI 182,780 (150 microg/kg). Two hours after resuscitation, we isolated keratinocytes, stimulated them with lipopolysaccharide for 24 h (5 microg/mL for maximum cytokine production), and measured the production of interleukin (IL)-6, IL-10, IL-12, and TNF-alpha and the activation of MAPK. Keratinocyte cytokine production markedly increased and MAPK activation occurred following trauma-hemorrhage but were normalized by administration of estrogen, PPT, and DPN. PPT and DPN administration were equally effective in normalizing the inflammatory response of keratinocytes, indicating that both ER-alpha and ER-beta mediate the salutary effects of estrogen on keratinocytes after trauma-hemorrhage.  相似文献   

2.
Although 17beta-estradiol administration following trauma-hemorrhage attenuates plasma cytokines and alteration in immune cell cytokine production, it is not known whether the salutary effects are mediated via estrogen receptor (ER)-alpha or ER-beta. Accordingly, we examined which ER subtype predominantly mediates the salutary effects of 17beta-estradiol on systemic inflammatory response/immune cell cytokine production in various tissues following trauma-hemorrhage. Male rats underwent trauma-hemorrhage (mean blood pressure: 40 mmHg for 90 min) and fluid resuscitation. The ER-alpha agonist propyl pyrazole triol (PPT; 5 microg/kg), the ER-beta agonist diarylpropionitrile (DPN; 5 microg/kg), 17beta-estradiol (50 microg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation, and various measurements were made 24 h thereafter. 17beta-Estradiol or PPT administration following trauma-hemorrhage prevented the increase in plasma IL-6 and IL-10 levels that were observed in vehicle-treated animals. IL-6 and TNF-alpha production by Kupffer cells increased; however, splenic macrophages (SMPhi), alveolar macrophages (AMPhi), and peripheral blood mononuclear cells (PBMC) had decreased release of these cytokines after trauma-hemorrhage. IL-10 production, however, increased in all macrophage populations. Administration of 17beta-estradiol following trauma-hemorrhage prevented all of these alterations. PPT had the same effects as 17beta-estradiol on IL-6 and TNF-alpha production by Kupffer cells and SMPhi, and DPN had the same effects on AMPhi and PBMC. The same effects as 17beta-estradiol on IL-10 production were observed by PPT on Kupffer cells and DPN on PBMC. Both agonists were equally effective on SMPhi and AMPhi. Thus ER subtypes have tissue compartment-specific roles in mediating the effects of 17beta-estradiol on immune cell functions following trauma-hemorrhage.  相似文献   

3.
Although 17beta-estradiol (E2) administration following trauma-hemorrhage (T-H) reduces liver injury by decreasing neutrophil accumulation via estrogen receptor (ER)-alpha, it remains unclear whether cytokine-induced neutrophil chemoattractant (CINC)-1 production by Kupffer cells (KC) is directly modulated by ER-alpha under such condition. Male rats underwent laparotomy and hemorrhagic shock (40 mmHg for 90 min), followed by resuscitation with four times the shed blood volume in the form of Ringer's lactate. ER-alpha agonist propyl pyrazole triol (PPT; 5 microg/kg), ER-beta agonist diarylpropionitrile (DPN; 5 microg/kg), E2 (50 microg/kg), or vehicle (10% DMSO) was administered subcutaneously during resuscitation; rats were sacrificed 24h thereafter. KC were isolated and cultured with ER agonists to examine if they directly affect CINC-1 production. T-H increased plasma alanine aminotransferase (ALT; hepatic injury) and hepatic myeloperoxidase (MPO) activity. E2, PPT and DPN administration reduced increased ALT; however, PPT was more effective than DPN. PPT and E2, but not DPN significantly attenuated increased hepatic MPO activity and CINC-1 levels. PPT addition in vitro (10(-7) and 10(-6)M) significantly reduced KC CINC-1 production. In summary, the salutary effects of E2 against hepatic injury are mediated predominantly via ER-alpha which directly modulates KC CINC-1 production and hepatic neutrophil accumulation following T-H.  相似文献   

4.
Studies have shown that p38 MAPK and nitric oxide (NO), generated by endothelial NO synthase (eNOS), play key roles under physiological and pathophysiological conditions. Although administration of 17beta-estradiol (E2) protects cardiovascular injury from trauma-hemorrhage, the mechanism by which E2 produces those effects remains unknown. Our objective was to determine whether the E2-mediated activation of myocardial p38 MAPK and subsequent eNOS expression/phosphorylation would protect the heart following trauma-hemorrhage. To study this, male Sprague-Dawley rats underwent soft-tissue trauma (midline laparatomy) and hemorrhagic shock (mean blood pressure 35-40 mmHg for 90 min), followed by fluid resuscitation. Animals were pretreated with specific p38 MAPK inhibitor SB-203580 (SB; 2 mg/kg), and nonselective NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 30 mg/kg) 30 min before vehicle (cyclodextrin) or E2 (100 microg/kg) treatment, followed by resuscitation, and were killed 2 h thereafter. Cardiovascular performance and other parameters were measured. E2 administration following trauma-hemorrhage increased cardiac p38 MAPK activity, eNOS expression and phosphorylation at Ser(1177), and nitrate/nitrite levels in plasma and heart tissues; these were associated with normalized cardiac performance, which was reversed by SB administration. In addition, E2 also prevented trauma-hemorrhage-induced increase in cytokines (IL-6 and TNF-alpha), chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant-1), and ICAM-1, which was reversed by l-NAME administration. Administration of E2 following trauma-hemorrhage attenuated cardiac tissue injury markers, myeloperoxidase activity, and nitrotyrosine level, which were reversed by treatment with SB and l-NAME. The salutary effects of E2 on cardiac functions and tissue protection following trauma-hemorrhage are mediated, in part, through activation of p38 MAPK and subsequent eNOS expression and phosphorylation.  相似文献   

5.
6.
Although previous studies have shown that flutamide improves cardiovascular function after trauma-hemorrhage, the mechanisms responsible for the salutary effect remain unknown. We hypothesized that flutamide mediates its beneficial effects via an estrogen-dependent pathway through upregulation of peroxisome proliferator-activated receptor-gamma coactivator 1 (PGC-1). PGC-1, a key regulator of cardiac mitochondrial ATP production, induces mitochondrial DNA (mtDNA)-encoded genes such as cytochrome-c oxidase (COX) subunit I, II, and III (COX I, COX II, and COX III), which regulates mitochondrial oxidative phosphorylation. To test this hypothesis, male rats underwent trauma-hemorrhage (mean arterial pressure of 35-40 mmHg for approximately 90 min) followed by resuscitation. At the onset of resuscitation, rats received vehicle, flutamide (25 mg/kg body wt), flutamide in combination with estrogen receptor (ER) antagonist ICI-182,780 (3 mg/kg body wt), or ICI-182,780 alone. Flutamide administration after trauma-hemorrhage restored the depressed cardiac function and increased cardiac testosterone, estrogen levels, and aromatase activity. These increases were accompanied by normalized cardiac ER-alpha and ER-beta protein levels, PGC-1, and COX I mRNA expression, mitochondrial COX activity, and ATP contents. However, cardiac dihydrotestosterone, 5alpha-reductase II, androgen receptor protein levels, and mtDNA-encoded genes COX II and COX III were unaffected by flutamide treatment. The flutamide-mediated restoration of cardiac function, the increases in aromatase activity and estrogen levels, ER-alpha, ER-beta, PGC-1, COX I, COX activity, and ATP contents were, however, abolished when ER antagonist ICI-182,780 was administrated along with flutamide. These findings suggest that the salutary effect of flutamide on cardiac function after trauma-hemorrhage is mediated via an estrogen-dependent pathway through upregulation of PGC-1.  相似文献   

7.
Although endothelin-1 (ET-1) induces vasoconstriction, it remains unknown whether 17beta-estradiol (E(2)) treatment following trauma-hemorrhage alters these ET-1-induced vasoconstrictive effects. In addition, the role of the specific estrogen receptor (ER) subtypes (ER-alpha and ER-beta) and the endothelium-localized downstream mechanisms of actions of E(2) remain unclear. We hypothesized that E(2) attenuates increased ET-1-induced vasoconstriction following trauma-hemorrhage via an ER-beta-mediated pathway. To study this, aortic rings were isolated from male Sprague-Dawley rats following trauma-hemorrhage with or without E(2) treatment, and alterations in tension were determined in vitro. Dose-response curves to ET-1 were determined, and the vasoactive properties of E(2), propylpyrazole triol (PPT, ER-alpha agonist), and diarylpropionitrile (DPN, ER-beta agonist) were determined. The results showed that trauma-hemorrhage significantly increased ET-1-induced vasoconstriction; however, administration of E(2) normalized ET-1-induced vasoconstriction in trauma-hemorrhage vessels to the sham-operated control level. The ER-beta agonist DPN counteracted ET-1-induced vasoconstriction, whereas the ER-alpha agonist PPT was ineffective. Moreover, the vasorelaxing effects of E(2) were not observed in endothelium-denuded aortic rings or by pretreatment of the rings with a nitric oxide (NO) synthase inhibitor. Cyclooxygenase inhibition with indomethacin had no effect on the action of E(2). Thus, E(2) administration attenuates ET-1-induced vasoconstriction following trauma-hemorrhage via an ER-beta-mediated pathway that is dependent on endothelium-derived NO synthesis.  相似文献   

8.
Recent studies have shown that dehydroepiandrosterone (DHEA) administration after trauma-hemorrhage (T-H) improves cardiovascular function and decreases cytokine production in male animals. Although androstenediol, one of the metabolites of DHEA, is reported to have estrogen-like activity, it remains unknown whether androstenediol per se has any salutary effects on cytokines and cardiovascular function after T-H. To examine this effect, male Sprague-Dawley rats underwent laparotomy and were bled to and maintained at a mean arterial blood pressure of 35-40 mmHg for approximately 90 min. The animals were resuscitated with four times the volume of maximal bleedout volume in the form of Ringer lactate. Androstenediol (1 mg/kg body wt i.v.) or vehicle was administered at the end of resuscitation. Twenty-four hours after resuscitation, cardiac function and organ blood flow were measured by using (85)Sr-microspheres. Circulating levels of nitrate/nitrite and IL-6 were also determined. Cardiovascular function and organ blood flow were significantly depressed after T-H. However, these parameters were restored by androstenediol treatment. The elevated plasma IL-6 levels after T-H were also lowered by androstenediol treatment. In contrast, plasma levels of nitrate/nitrite were the highest in the androstenediol-treated T-H animals. Because androstenediol administration after T-H decreases cytokine production and improves cardiovascular function, this agent appears to be a novel and useful adjunct for restoring the depressed cardiovascular function and for cytokine production in males after adverse circulatory conditions.  相似文献   

9.
Although studies have shown that 17beta-estradiol (E(2)) prevents neutrophil infiltration and organ damage following trauma-hemorrhage, the mechanism by which E(2) inhibits neutrophil transmigration remains unknown. Macrophage migration inhibitory factor (MIF) is thought to play a central role in exacerbation of inflammation and is associated with lung injury. MIF regulates the inflammatory response through modulation of Toll-like receptor 4 (TLR4). Activation of TLR4 results in the release of proinflammatory cytokines and chemokines, which induce neutrophil infiltration and subsequent tissue damage. We hypothesized that E(2) mediates its salutary effects in the lung following trauma-hemorrhage via negative regulation of MIF and modulation of TLR4 and cytokine-induced chemotaxis. C3H/HeOuJ mice were subjected to trauma-hemorrhage (mean blood pressure 35 +/- 5 mmHg for approximately 90 min, then resuscitation) or sham operation. Mice received vehicle, E(2), or E(2) in combination with recombinant mouse MIF protein (rMIF). Trauma-hemorrhage increased lung MIF and TLR4 protein levels as well as lung and systemic levels of cytokines/chemokines. Treatment of animals with E(2) following trauma-hemorrhage prevented these changes. However, administration of rMIF protein with E(2) abolished the E(2)-mediated decrease in lung TLR4 levels, lung and plasma levels of IL-6, TNF-alpha, monocyte chemoattractant protein-1, and keratinocyte-derived chemokine (KC). Administration of rMIF protein also prevented E(2)-mediated reduction in neutrophil influx and tissue damage in the lungs following trauma-hemorrhage. These results suggest that the protective effects of E(2) on lung injury following trauma-hemorrhage are mediated via downregulation of lung MIF and TLR4-induced cytokine/chemokine production.  相似文献   

10.
Although endothelin-1 (ET-1)-induced organ hypoperfusion after trauma-hemorrhage is improved by estrogen administration, it remains unclear whether estrogen receptor (ER) subtypes play any role in the attenuation of ET-1-induced vasoconstriction in any specific organ bed. To investigate this, isolated perfusion experiments in the heart, liver, small intestine, kidney, and lung were carried out in sham, at the time of maximum bleedout (MBO; i.e., 5-cm midline incision, with removal of 60% of circulating blood volume over 45 min to maintain a mean blood pressure of 40 mmHg), and 2 h after trauma-hemorrhage and resuscitation (T-H/R). Organ-specific ET-1-induced vasoconstriction was evaluated, and the effects of 17beta-estradiol (E2) and ER-specific agonists propylpyrazole triol (PPT; ERalpha agonist) and diarylpropionitrile (DPN; ERbeta agonist) were determined. ET-1 induced the greatest vasoconstriction in sham animals, with the strongest response in the kidneys, followed by the small intestine and liver. ET-1-induced responses were weakest in the heart and lungs. ET-1-induced vasoconstriction was evident at the time of MBO but was significantly decreased at 2 h after T-H/R. ERbeta plays an important role in cardiac performance, as evidenced by improved heart performance (+dP/dt) in the presence of DPN. DPN also induced a greater effect than PPT in the reduction of ET-1-induced vasoconstriction in the kidneys and lungs. In contrast, PPT attenuated ET-1-induced vasoconstriction in the liver, whereas both DPN and PPT were equally effective in the small intestine. The increased +dP/dt values induced by E2, DPN, or PPT were evident at the time of MBO but were significantly decreased at 2 h after T-H/R. These data indicate that the effects of ET-1 on vasoconstriction and the role of ER subtypes in estrogen-induced vasorelaxation are organ specific and temporally specific after trauma-hemorrhage.  相似文献   

11.
p38 mitogen-activated protein kinase (MAPK) activates a number of heat shock proteins (HSPs), including HSP27 and alpha(B)-crystallin, in response to stress. Activation of HSP27 or alpha(B)-crystallin is known to protect organs/cells by increasing the stability of actin microfilaments. Although our previous studies showed that 17beta-estradiol (E(2)) improves cardiovascular function after trauma-hemorrhage, whether the salutary effects of E(2) under those conditions are mediated via p38 MAPK remains unknown. Male rats (275-325 g body wt) were subjected to soft tissue trauma and hemorrhage (35-40 mmHg mean blood pressure for approximately 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were injected intravenously with vehicle, E(2) (1 mg/kg body wt), E(2) + the p38 MAPK inhibitor SB-203580 (2 mg/kg body wt), or SB-203580 alone, and various parameters were measured 2 h thereafter. Cardiac functions that were depressed after trauma-hemorrhage were returned to normal levels by E(2) administration, and phosphorylation of cardiac p38 MAPK, HSP27, and alpha(B)-crystallin was increased. The E(2)-mediated improvement of cardiac function and increase in p38 MAPK, HSP27, and alpha(B)-crystallin phosphorylation were abolished with coadministration of SB-203580. These results suggest that the salutary effect of E(2) on cardiac function after trauma-hemorrhage is in part mediated via upregulation of p38 MAPK and subsequent phosphorylation of HSP27 and alpha(B)-crystallin.  相似文献   

12.
Recent studies have shown that administration of dehydroepiandrosterone (DHEA) after trauma-hemorrhage (T-H) improves cardiovascular and hepatic function in male animals. Although androstenediol, one of the DHEA metabolites, has been recently reported to produce salutary effects on cardiac function and splanchnic perfusion after T-H, it remains unknown whether androstenediol per se has any salutary effects on hepatic function under those conditions. To study this, male Sprague-Dawley rats underwent laparotomy and approximately 90 min of hemorrhagic shock (35-40 mmHg), followed by resuscitation with four times the shed blood volume in the form of Ringer lactate. Androstenediol (1 mg/kg body wt iv) was administered at the end of resuscitation, and the animals were killed 24 h later. T-H significantly reduced portal blood flow, bile production, and serum albumin levels. Portal pressure, serum alanine aminotransferase, hepatic nitrate/nitrite, inducible nitric oxide synthase (iNOS), and endothelin-1 markedly increased after T-H. The alterations in these parameters induced by T-H were significantly attenuated in rats treated with androstenediol. Endothelial NOS (eNOS) expression, which was not different between T-H and sham, was found to be significantly elevated in T-H androstenediol-treated rats. These data suggest that improvement in hepatic perfusion by androstenediol after T-H is likely due to a decrease in endothelin-1 and induction of eNOS. Moreover, the decrease in hepatic damage after androstenediol administration is likely related to liver iNOS downregulation. Thus androstenediol appears to be a novel and useful adjunct for restoring hepatic function in male animals after adverse circulatory conditions.  相似文献   

13.
Although astringinin administration under adverse circulatory conditions is known to be protective, the mechanism by which astringinin produces the salutary effects remains unknown. We hypothesize that astringinin administration in males following trauma-hemorrhage decreases cytokine production and protects against hepatic injury. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure: 40 mmHg for 90 min, then resuscitation). Different doses of astringinin (0.01, 0.03, 0.1, 0.3 mg/kg of body weight) or vehicle were administered intravenously during resuscitation. Concentrations of plasma aspartate aminotransferase (AST) with alanine aminotransferase (ALT) and various hepatic parameters were measured (n = 8 rats/group) at 24 h after resuscitation. One-way ANOVA and Tukey testing were used for statistical analysis. Trauma-hemorrhage significantly increased plasma AST and ALT levels at 24 h postresuscitation; there was a dose-related benefit when astringinin was administered at doses of 0.01 to 0.3 mg/kg. In astringinin-treated (0.3 mg/kg) rats subjected to trauma-hemorrhage, there were significant improvements in liver myeloperoxidase (MPO) activity (237.80 +/- 45.89 vs. 495.95 +/- 70.64 U/mg protein, P < 0.05), interleukin-6 (IL-6) levels (218.54 +/- 34.52 vs. 478.60 +/- 76.21 pg/mg protein, P < 0.05), cytokine-induced neutrophil chemoattractant (CINC)-1 (88.32 +/- 20.33 vs. 200.70 +/- 32.68 pg/mg protein, P < 0.05), CINC-3 (110.83 +/- 26.63 vs. 290.14 +/- 76.82 pg/mg protein, P < 0.05) and intercellular adhesion molecule (ICAM)-1 concentrations (1,868.5 +/- 211.5 vs. 3,645.0 +/- 709.2 pg/mg protein, P < 0.05), as well as in histology. Results show that astringinin significantly attenuates proinflammatory responses and hepatic injury after trauma-hemorrhage. In conclusion, the salutary effects of astringinin administration on attenuation of hepatic injury following trauma-hemorrhage are likely due to reduction of pro-inflammatory mediator levels.  相似文献   

14.
p38 MAPK has been reported to regulate the inflammatory response in various cell types via extracellular stimuli. p38 MAPK activation also results in the induction of heme oxygenase (HO)-1, which exerts potent anti-inflammatory effects. Although studies have shown that 17beta-estradiol (E(2)) prevented organ dysfunction following trauma-hemorrhage, it remains unknown whether p38 MAPK/HO-1 plays any role in E(2)-mediated attenuation of intestinal injury under those conditions. To study this, male rats underwent trauma-hemorrhage (mean blood pressure approximately 40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E(2) (1 mg/kg body wt), the p38 MAPK inhibitor SB-203580 (2 mg/kg body wt) or E(2) plus SB-203580. Two hours thereafter, intestinal myeloperoxidase (MPO) activity and lactate, TNF-alpha, IL-6, ICAM-1, cytokine-induced neutrophil chemoattractant (CINC)-1, and macrophage inflammatory protein (MIP)-2 levels were measured. Intestinal p38 MAPK and HO-1 protein levels were also determined. Trauma-hemorrhage led to an increase in intestinal MPO activity and lactate, TNF-alpha, IL-6, ICAM-1, CINC-1, and MIP-2 levels. This was accompanied with a decrease in intestinal p38 MAPK activity and increase in HO-1 expression. Administration of E(2) normalized all the above parameters except HO-1, which was further increased following trauma-hemorrhage. Administration of SB-203580 with E(2) abolished the E(2)-mediated restoration of the above parameters as well as the increase in intestinal HO-1 expression following trauma-hemorrhage. These results suggest that the p38 MAPK/HO-1 pathway plays a critical role in mediating the salutary effects of E(2) on shock-induced intestinal injury.  相似文献   

15.
Although angiotensin II (Ang II) plays a key role in development of organ ischemia-reperfusion injury, it remains unclear whether it is involved in development of intestinal injury following trauma-hemorrhage (T-H). Studies have shown that 17beta-estradiol (E2) administration following T-H improves small intestinal blood flow; however, it is unclear whether Ang II plays a role in this E2-mediated salutary effect. Male Sprague-Dawley rats underwent laparotomy and hemorrhagic shock (removal of 60% total blood volume, fluid resuscitation after 90 min). At onset of resuscitation, rats were treated with vehicle, E2, or E2 and estrogen receptor antagonist ICI 182,780 (ICI). A separate group of rats was treated with Ang II subtype I receptor (AT1R) antagonist losartan. At 24 h after T-H, plasma Ang II, IL-6, TNF-alpha, intercellular adhesion molecule (ICAM)-1, cytokine-induced neutrophil chemoattractant (CINC)-1 and CINC-3 levels, myeloperoxidase (MPO) activity, and AT1R expression were determined. T-H significantly increased plasma and intestinal Ang II, IL-6, TNF-alpha levels, intestinal ICAM-1, CINC-1, CINC-3 levels, MPO activity, and AT1R protein compared with shams. E2 treatment following T-H attenuated increased intestinal MPO activity, Ang II level, and AT1R protein expression. ICI administration abolished the salutary effects of E2. In contrast, losartan administration attenuated increased MPO activity without affecting Ang II and AT1R levels. Thus Ang II plays a role in producing small intestine inflammation following T-H, and the salutary effects of E2 on intestinal inflammation are mediated in part by Ang II and AT1R downregulation.  相似文献   

16.
17.
Although 17-estradiol (E2) administration following trauma-hemorrhage prevents the suppression in splenocyte cytokine production, it remains unknown whether the salutary effects of 17-estradiol are mediated via estrogen receptor (ER)- or ER-. Moreover, it is unknown which signaling pathways are involved in 17-estradiol's salutary effects. Utilizing an ER-- or ER--specific agonist, we examined the role of ER- and ER- in E2-mediated restoration of T-cell cytokine production following trauma-hemorrhage. Moreover, since MAPK, NF-B, and activator protein (AP)-1 are known to regulate T-cell cytokine production, we also examined the activation of MAPK, NF-B, and AP-1. Male rats underwent trauma-hemorrhage (mean arterial pressure 40 mmHg for 90 min) and fluid resuscitation. ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic T cells were isolated, and their IL-2 and IFN- production and MAPK, NF-B, and AP-1 activation were measured. T-cell IL-2 and IFN- production was decreased following trauma-hemorrhage, and this was accompanied with a decrease in T-cell MAPK, NF-B, and AP-1 activation. PPT or 17-estradiol administration following trauma-hemorrhage normalized those parameters, while DPN administration had no effect. Since PPT, but not DPN, administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the T-cell suppression, it appears that ER- plays a predominant role in mediating the salutary effects of 17-estradiol on T cells following trauma-hemorrhage, and that such effects are likely mediated via normalization of MAPK, NF-B, and AP-1 signaling pathways. shock; MAPK; NF-B; activator protein-1; propyl pyrazole triol; diarylpropionitrile  相似文献   

18.
Although 17-estradiol administration following trauma-hemorrhage prevents the suppression in splenic macrophage cytokine production, it remains unknown whether the salutary effects are mediated via estrogen receptor (ER)- or ER- and which signaling pathways are involved in such 17-estradiol effects. Utilizing ER-- or ER--specific agonists, this study examined the role of ER- and ER- in 17-estradiol-mediated restoration of macrophage cytokine production following trauma-hemorrhage. In addition, since MAPK and NF-B are known to regulate macrophage cytokine production, we also examined the activation of those signaling molecules. Male rats underwent trauma-hemorrhage (mean arterial pressure of 40 mmHg for 90 min) and fluid resuscitation. The ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), the ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic macrophages were isolated, and their IL-6 and TNF- production and activation of MAPK and NF-B were measured. Macrophage IL-6 and TNF- production and MAPK activation were decreased, whereas NF-B activity was increased, following trauma-hemorrhage. PPT or 17-estradiol administration after trauma-hemorrhage normalized those parameters. DPN administration, on the other hand, did not normalize the above parameters. Since PPT but not DPN administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the suppression in macrophage cytokine production, it appears that ER- plays the predominant role in mediating the salutary effects of 17-estradiol on macrophage cytokine production following trauma-hemorrhage and that such effects are likely mediated via normalization of MAPK but not NF-B signaling pathways. shock; mitogen-activated protein kinase; nuclear factor-B; propyl pyrazole triol; diarylpropionitrile  相似文献   

19.
Although studies indicate that 17beta-estradiol administration after trauma-hemorrhage (T-H) improves cardiac and hepatic functions, the underlying mechanisms remain unclear. Because the induction of heat shock proteins (HSPs) can protect cardiac and hepatic functions, we hypothesized that these proteins contribute to the salutary effects of estradiol after T-H. To test this hypothesis, male Sprague-Dawley rats ( approximately 300 g) underwent laparotomy and hemorrhagic shock (35-40 mmHg for approximately 90 min) followed by resuscitation with four times the shed blood volume in the form of Ringer lactate. 17beta-estradiol (1 mg/kg body wt) was administered at the end of the resuscitation. Five hours after T-H and resuscitation there was a significant decrease in cardiac output, positive and negative maximal rate of left ventricular pressure. Liver function as determined by bile production and indocyanine green clearance was also compromised after T-H and resuscitation. This was accompanied by an increase in plasma alanine aminotransferase (ALT) levels and liver perfusate lactic dehydrogenase levels. Furthermore, circulating levels of TNF-alpha, IL-6, and IL-10 were also increased. In addition to decreased cardiac and hepatic function, there was an increase in cardiac HSP32 expression and a reduction in HSP60 expression after T-H. In the liver, HSP32 and HSP70 were increased after T-H. There was no change in heart HSP70 and liver HSP60 after T-H and resuscitation. Estradiol administration at the end of T-H and resuscitation increased heart/liver HSPs expression, ameliorated the impairment of heart/liver functions, and significantly prevented the increase in plasma levels of ALT, TNF-alpha, and IL-6. The ability of estradiol to induce HSPs expression in the heart and the liver suggests that HSPs, in part, mediate the salutary effects of 17beta-estradiol on organ functions after T-H.  相似文献   

20.
Liu FC  Hwang TL  Lau YT  Yu HP 《PloS one》2011,6(10):e25907
Astringinin can attenuate organ injury following trauma-hemorrhage, the mechanism remains unknown. Protein kinase B/hemeoxygenase-1 (Akt/HO-1) pathway exerts potent anti-inflammatory effects in various tissues. The aim of this study is to elucidate whether Akt/HO-1 plays any role in astringinin-mediated attenuation of hepatic injury following trauma-hemorrhage. For study this, male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure 35-40 mmHg for 90 min) followed by fluid resuscitation. A single dose of astringinin (0.3 mg/kg body weight) with or without a PI3K inhibitor (wortmannin) or a HO antagonist (chromium-mesoporphyrin) was administered during resuscitation. Various parameters were measured at 24 h post-resuscitation. Results showed that trauma-hemorrhage increased plasma aspartate and alanine aminotransferases (AST and ALT) concentrations and hepatic myeloperoxidase activity, cytokine induced neutrophil chemoattractant (CINC)-1, CINC-3, intercellular adhesion molecule-1, and interleukin-6 levels. These parameters were significantly improved in the astringinin-treated rats subjected to trauma-hemorrhage. Astringinin treatment also increased hepatic Akt activation and HO-1 expression as compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of wortmannin or chromium-mesoporphyrin abolished the astringinin-induced beneficial effects on post-resuscitation pro-inflammatory responses and hepatic injury. These findings collectively suggest that the salutary effects of astringinin administration on attenuation of hepatic injury after trauma-hemorrhage are likely mediated via Akt dependent HO-1 up-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号