首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We have determined the crystal structure of the ligand binding segment of the Enterococcus faecalis collagen binding MSCRAMM ACE (microbial surface components recognizing adhesive matrix molecules adhesin of collagen from enterococci). This segment is composed of two subdomains, N(1) and N(2), each adopting an IgG-like fold and forming a putative collagen binding surface at the interface between the two subdomains. This structure is very similar to that recently reported for CNA, the collagen binding MSCRAMM of Staphylococcus aureus, for which a unique ligand binding mechanism called the Collagen Hug was proposed. We suggest that ACE binds collagen by a similar mechanism and present the first biochemical evidence for this binding model. Replacing residues in the putative collagen binding trench of ACE N(2) with Ala residues affected collagen binding. A closed conformation of ACE stabilized by an engineered disulfide bond is unable to bind collagen. Finally, the importance of the residues in the N(2) extension in stabilizing the MSCRAMM-ligand complex is demonstrated by selected point and truncation mutations.  相似文献   

2.
The discoidin domain receptors, DDR1 and DDR2, are a subfamily of receptor tyrosine kinases that are activated upon binding to collagen. DDR–collagen interactions play an important role in cell proliferation and migration. Over the past few decades, synthetic peptides and recombinant collagen have been developed as tools to study the biophysical characteristics of collagen and various protein–collagen interactions. Herein we review how these techniques have been used to understand DDR–collagen interactions. Using synthetic collagen-like peptides, the GVM-GFO motif has been found to be the major binding site on collagens II and III for DDR1 and DDR2. An X-ray co-crystal structure of the DDR2 DS domain bound to a synthetic collagen-like peptide containing the GVM-GFO motif further provides molecular details of the DDR–collagen interactions. Recombinant collagen has also been used to provide further validation of the GVM-GFO binding motif. Although GVM-GFO has been defined as the minimal binding site, in synthetic peptide studies at least two triplets N-terminal to the essential GVM-GFO binding motif in collagen III sequence are needed for DDR2 activation at high peptide concentrations.  相似文献   

3.
Staphylococcus epidermidis is an opportunistic pathogen and a major cause of foreign body infections. The S. epidermidis fibrinogen (Fg)-binding adhesin SdrG is necessary and sufficient for the attachment of this pathogen to Fg-coated materials. Based largely on structural analyses of the ligand binding domain of SdrG as an apo-protein and in complex with a Fg-like peptide, we proposed that SdrG follows a "dock, lock, and latch" mechanism to bind to Fg. This binding mechanism involves the docking of the ligand in a pocket formed between two SdrG subdomains followed by the movement of a C-terminal extension of one subdomain to cover the ligand and to insert and complement a beta-sheet in a neighboring subdomain. These proposed events result in a greatly stabilized closed conformation of the MSCRAMM-ligand complex. In this report, we describe a biochemical analysis of the proposed conformational changes that SdrG undergoes upon binding to its ligand. We have introduced disulfide bonds into SdrG to stabilize the open and closed forms of the apo-form of the MSCRAMM. We show that the stabilized closed form does not bind to the ligand and that binding can be restored in the presence of reducing agents such as dithiothreitol. We have also used F?rster resonance energy transfer to dynamically show the conformational changes of SdrG upon binding to its ligand. Finally, we have used isothermic calorimetry to determine that hydrophobic interactions between the ligand and the protein are responsible for re-directing the C-terminal extension of the second subdomain required for triggering the beta-strand complementation event.  相似文献   

4.
Khew ST  Tong YW 《Biochemistry》2008,47(2):585-596
Most proteins fold into specific structures to exert their biological functions, and therefore the creation of protein-like molecular architecture is a fundamental prerequisite toward realizing a novel biologically active protein-like biomaterial. To do this with an artificial collagen, we have engineered a peptide template characterized by its collagen-like primary structure composed of Gly-Phe-Gly-Glu-Glu-Gly sequence to assemble (Pro-Hyp-Gly)n (n = 3 and 5) into triple-helical conformations that resemble the native structure of collagen. The peptide template has three carboxyl groups connected to the N-termini of three collagen peptides. The coupling was accomplished by a simple and direct branching protocol without complex strategies. A series of biophysical studies, including melting curve analyses and CD and NMR spectroscopy, demonstrated the presence of stable triple-helical conformation in the template-assembled (Pro-Hyp-Gly)3 and (Pro-Hyp-Gly)5 solution. Conversely, nontemplated peptides showed no evidence of assembly of triple-helical structure. A cell binding sequence (Gly-Phe-Hyp-Gly-Glu-Arg) derived from the collagen alpha1(I) chain was incorporated to mimic the integrin-specific cell adhesion of collagen. Cell adhesion and inhibition assays and immunofluorescence staining revealed a correlation of triple-helical conformation with cellular recognition of collagen mimetics in an integrin-specific way. This study offers a robust strategy for engineering native-like peptide-based biomaterials, fully composed of only amino acids, by maintaining protein conformation integrity and biological activity.  相似文献   

5.
Hsp70 chaperones keep protein homeostasis facilitating the response of organisms to changes in external and internal conditions. Hsp70s have two domains—nucleotide binding domain (NBD) and substrate binding domain (SBD)—connected by a conserved hydrophobic linker. Functioning of Hsp70s depend on tightly regulated cycles of ATP hydrolysis allosterically coupled, often together with cochaperones, to the binding/release of peptide substrates. Here we describe the crystal structure of the Mycoplasma genitalium DnaK (MgDnaK) protein, an Hsp70 homolog, in the noncompact, nucleotide‐bound/substrate‐bound conformation. The MgDnaK structure resembles the one from the thermophilic eubacteria DnaK trapped in the same state. However, in MgDnaK the NBD and SBD domains remain close to each other despite the lack of direct interaction between them and with the linker contacting the two subdomains of SBD. These observations suggest that the structures might represent an intermediate of the protein where the conserved linker binds to the SBD to favor the noncompact state of the protein by stabilizing the SBDβ‐SBDα subdomains interaction, promoting the capacity of the protein to sample different conformations, which is critical for proper functioning of the molecular chaperone allosteric mechanism. Comparison of the solved structures indicates that the NBD remains essentially invariant in presence or absence of nucleotide.  相似文献   

6.
To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen-Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly-Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat-denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex.  相似文献   

7.
The GFOGER motif in collagens (O denotes hydroxyproline) represents a high-affinity binding site for all collagen-binding integrins. Other GxOGER motifs require integrin activation for maximal binding. The E318W mutant of the integrin α2β1 I domain displays a relaxed collagen specificity, typical of an active state. E318W binds more strongly than the wild-type α2 I domain to GMOGER, and forms a 2:1 complex with a homotrimeric, collagen-like, GFOGER peptide. Crystal structure analysis of this complex reveals two E318W I domains, A and B, bound to a single triple helix. The E318W I domains are virtually identical to the collagen-bound wild-type I domain, suggesting that the E318W mutation activates the I domain by destabilising the unligated conformation. E318W I domain A interacts with two collagen chains similarly to wild-type I domain (high-affinity mode). E318W I domain B makes favourable interactions with only one collagen chain (low-affinity mode). This observation suggests that single GxOGER motifs in the heterotrimeric collagens V and IX may support binding of activated integrins.  相似文献   

8.
The receptor kinase EFR of Arabidopsis thaliana detects the microbe-associated molecular pattern elf18, a peptide that represents the N terminus of bacterial elongation factor Tu. Here, we tested subdomains of EFR for their importance in receptor function. Transient expression of tagged versions of EFR and EFR lacking its cytoplasmic domain in leaves of Nicotiana benthamiana resulted in functional binding sites for elf18. No binding of ligand was found with the ectodomain lacking the transmembrane domain or with EFR lacking the first 5 of its 21 leucine-rich repeats (LRRs). EFR is structurally related to the receptor kinase flagellin-sensing 2 (FLS2) that detects bacterial flagellin. Chimeric receptors with subdomains of FLS2 substituting for corresponding parts of EFR were tested for functionality in ligand binding and receptor activation assays. Substituting the transmembrane domain and the cytoplasmic domain resulted in a fully functional receptor for elf18. Replacing also the outer juxtamembrane domain with that of FLS2 led to a receptor with full affinity for elf18 but with a lower efficiency in response activation. Extending the substitution to encompass also the last two of the LRRs abolished binding and receptor activation. Substitution of the N terminus by the first six LRRs from FLS2 reduced binding affinity and strongly affected receptor activation. In summary, chimeric receptors allow mapping of subdomains relevant for ligand binding and receptor activation. The results also show that modular assembly of chimeras from different receptors can be used to form functional receptors.  相似文献   

9.
The galectins are a family of beta-galactoside-binding animal lectins with a conserved carbohydrate recognition domain (CRD). They have a high affinity for small beta-galactosides, but binding specificity for complex glycoconjugates varies considerably within the family. The ligand recognition is essential for their proper function, and the structures of several galectins have suggested their mechanism of carbohydrate binding. Galectin-9 has two tandem CRDs with a short linker, and we report the crystal structures of mouse galectin-9 N-terminal CRD (NCRD) in the absence and the presence of four ligand complexes. All structures form the same dimer, which is quite different from the canonical 2-fold symmetric dimer seen for galectin-1 and -2. The beta-galactoside recognition mechanism in the galectin-9 NCRD is highly conserved among other galectins. In the apo form structure, water molecules mimic the ligand hydrogen-bond network. The galectin-9 NCRD can bind both N-acetyllactosamine (Galbeta1-4GlcNAc) and T-antigen (Galbeta1-3GalNAc) with the proper location of Arg-64. Moreover, the structure of the N-acetyllactosamine dimer (Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc) complex shows a unique binding mode of galectin-9. Finally, surface plasmon resonance assay showed that the galectin-9 NCRD forms a homophilic dimer not only in the crystal but also in solution.  相似文献   

10.
Ligand‐gated Glutamate receptors (GluR) mediate synaptic signals in the nervous system. Ionotropic GluRs of AMPA type, the subject of this study, are tetrameric assemblies of monomer subunits, each of which is constructed in a modular fashion from functional subdomains. The extracellular ligand‐binding domain (LBD) changes its conformation upon binding of an agonist ligand followed by opening of a transmembrane (TM) ion channel. Peptides connecting the LBD and TM domains facilitate gating of the channel, and their structure and composition are important for the receptor functioning. In this study, we used replica exchange molecular dynamics (REMD) simulations to model S1M1 and S2M3 connecting peptides of the GluR2 receptor in two implicit solvents, water and interfacial water/lipid medium characterized by lower polarity. Propensity of these peptides to form helical structures was analyzed using helicity measure derived from the free energy of the simulated ensembles of structures. The S1M1 and S2M3 connecting peptides were not helical in our simulations in both dielectric environments in the absence of the rest of the protein. The structures of the LBD fragment with known high‐resolution α‐helical structure and of the TM3 helix were successfully predicted in the simulations, which in part validate our results. The S2M3 peptide, which is important in gating, formed a well‐defined coil structure and salt‐bridges with the S2 domain. The S1M1 peptide formed a loop structure via formation of internal salt‐bridges. Potential implications of these structures on function of the receptor are discussed. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
The family 10 xylanase from Streptomyces olivaceoviridis E-86 contains a (beta/alpha)(8)-barrel as a catalytic domain, a family 13 carbohydrate binding module (CBM) as a xylan binding domain (XBD) and a Gly/Pro-rich linker between them. The crystal structure of this enzyme showed that XBD has three similar subdomains, as indicated by the presence of a triple-repeated sequence, forming a galactose binding lectin fold similar to that found in the ricin toxin B-chain. Comparison with the structure of ricin/lactose complex suggests three potential sugar binding sites in XBD. In order to understand how XBD binds to the xylan chain, we analyzed the sugar-complex structure by the soaking experiment method using the xylooligosaccharides and other sugars. In the catalytic cleft, bound sugars were observed in the xylobiose and xylotriose complex structures. In the XBD, bound sugars were identified in subdomains alpha and gamma in all of the complexes with xylose, xylobiose, xylotriose, glucose, galactose and lactose. XBD binds xylose or xylooligosaccharides at the same sugar binding sites as in the case of the ricin/lactose complex but its binding manner for xylose and xylooligosaccharides is different from the galactose binding mode in ricin, even though XBD binds galactose in the same manner as in the ricin/galactose complex. These different binding modes are utilized efficiently and differently to bind the long substrate to xylanase and ricin-type lectin. XBD can bind any xylose in the xylan backbone, whereas ricin-type lectin recognizes the terminal galactose to sandwich the large sugar chain, even though the two domains have the same family 13 CBM structure. Family 13 CBM has rather loose and broad sugar specificities and is used by some kinds of proteins to bind their target sugars. In such enzyme, XBD binds xylan, and the catalytic domain may assume a flexible position with respect to the XBD/xylan complex, inasmuch as the linker region is unstructured.  相似文献   

12.
The AAA+ family of proteins play fundamental roles in all three kingdoms of life. It is thought that they act as molecular chaperones in aiding the assembly or disassembly of proteins or protein complexes. Recent structural studies on a number of AAA+ family proteins have revealed that they share similar structural elements. These structures provide a possible link between nucleotide binding/hydrolysis and the conformational changes which are then amplified to generate mechanical forces for their specific functions. However, from these individual studies it is far from clear whether AAA+ proteins in general share properties in terms of nucleotide induced conformational changes. In this study, we analyze sequence conservation within the AAA+ family and identify two subfamilies, each with a distinct conserved linker sequence that may transfer conformational changes upon ATP binding/release to movements between subdomains and attached domains. To investigate the relation of these linker sequences to conformational changes, molecular dynamics (MD) simulations on X-ray structures of AAA+ proteins from each subfamily have been performed. These simulations show differences in both the N-linker peptide, subdomain motion, and cooperativity between elements of quaternary structure. Extrapolation of subdomain movements from one MD simulation enables us to produce a structure in close agreement with cryo-EM experiments.  相似文献   

13.
The fibronectin binding protein, FnBPA, is a multifunctional microbial surface component recognizing adhesive matrix molecule (MSCRAMM) that promotes bacterial adherence to immobilized fibrinogen and elastin via the N-terminal A domain. The binding site for fibrinogen and elastin was localized to subdomains N2N3. A three-dimensional structural model of FnBPA was created based on the known crystal structure of the domains N2N3 of clumping factor A (ClfA). The role of individual residues in the putative ligand binding trench was examined by testing the affinity of mutants for fibrinogen and elastin. Two residues (N304 and F306) were crucial for binding both ligands and are in the equivalent positions to residues known to be important for fibrinogen binding by ClfA. A peptide comprising the C-terminus of the gamma-chain of fibrinogen and a monoclonal anti-rAFnBPA antibody were potent inhibitors of the FnBPA-elastin interaction. This suggests that FnBPA binds to fibrinogen and elastin in a similar manner. Amino acid sequence divergence of 26.5% occurred between the A domains of FnBPA from strains 8325-4 and P1. Most variant residues were predicted to be located on the surface of domains N2N3 while few occurred in the putative ligand binding trench and the latching peptide explaining limited immunocross reactivity while ligand binding activity is conserved.  相似文献   

14.
The Caenorhabditis elegans SEM-5 SH3 domains recognize proline-rich peptide segments with modest affinity. We developed a bivalent peptide ligand that contains a naturally occurring proline-rich binding sequence, tethered by a glycine linker to a disulfide-closed loop segment containing six variable residues. The glycine linker allows the loop segment to explore regions of greatest diversity in sequence and structure of the SH3 domain: the RT and n-Src loops. The bivalent ligand was optimized using phage display, leading to a peptide (PP-G(4)-L) with 1000-fold increased affinity for the SEM-5 C-terminal SH3 domain over that of a natural ligand. NMR analysis of the complex confirms that the peptide loop segment is targeted to the RT and n-Src loops and parts of the beta-sheet scaffold of this SH3 domain. This binding region is comparable to that targeted by a natural non-PXXP peptide to the p67(phox) SH3 domain, a region not known to be targeted in the Grb2 SH3 domain family. PP-G(4)-L may aid in the discovery of additional binding partners of Grb2 family SH3 domains.  相似文献   

15.
Many pathogenic bacteria interact with human integrins to enter host cells and to augment host colonization. Group A Streptococcus (GAS) employs molecular mimicry by direct interactions between the cell surface streptococcal collagen-like protein-1 (Scl1) and the human collagen receptor, integrin alpha2beta1. The collagen-like (CL) region of the Scl1 protein mediates integrin-binding, although, the integrin binding motif was not defined. Here, we used molecular cloning and site-directed mutagenesis to identify the GLPGER sequence as the alpha2beta1 and the alpha11beta1 binding motif. Electron microscopy experiments mapped binding sites of the recombinant alpha2-integrin-inserted domain to the GLPGER motif of the recombinant Scl (rScl) protein. rScl proteins and a synthetic peptide harboring the GLPGER motif mediated the attachment of C2C12-alpha2+myoblasts expressing the alpha2beta1 integrin as the sole collagen receptor. The C2C12-alpha11+myoblasts expressing the alpha11beta1 integrin also attached to GLPGER-harboring rScl proteins. Furthermore, the C2C12-alpha11+cells attached to rScl1 more efficiently than C2C12-alpha2+cells, suggesting that the alpha11beta1 integrin may have a higher binding affinity for the GLPGER sequence. Human endothelial cells and dermal fibroblasts adhered to rScl proteins, indicating that multiple cell types may recognize and bind the Scl proteins via their collagen receptors. This work is a stepping stone toward defining the utilization of collagen receptors by microbial collagen-like proteins that are expressed by pathogenic bacteria.  相似文献   

16.
Because of their ability to degrade RNA, RNases are potent cytotoxins. The cytotoxic activity of most members of the RNase A superfamily, however, is abolished by the cytosolic ribonuclease inhibitor (RI). RNase A tandem enzymes, in which two RNase A molecules are artificially connected by a peptide linker, and thus have a pseudodimeric structure, exhibit remarkable cytotoxic activity. In vitro, however, these enzymes are still inhibited by RI. Here, we present the crystal structures of three tandem enzymes with the linker sequences GPPG, SGSGSG, and SGRSGRSG, which allowed us to analyze the mode of binding of RI to the RNase A tandem enzymes. Modeling studies with the crystal structures of the RI-RNase A complex and the SGRSGRSG-RNase A tandem enzyme as templates suggested a 1 : 1 binding stoichiometry for the RI-RNase A tandem enzyme complex, with binding of the RI molecule to the N-terminal RNase A entity. These results were experimentally verified by analytical ultracentrifugation, quantitative electrophoresis, and proteolysis studies with trypsin. As other dimeric RNases, which are comparably cytotoxic, either evade RI binding or potentially even bind two RI molecules, inactivation by RI cannot be the crucial limitation to the cytotoxicity of dimeric RNases.  相似文献   

17.
The conditions for accurately determining distance constraints from TrNOESY data on a small ligand (3'CMP) bound to a small protein (RNase A, <14 kDa) are described. For small proteins, normal TrNOESY conditions of 10:1 ligand:protein or greater can lead to inaccurate structures for the ligand-bound conformation due to the contribution of the free ligand to the TrNOESY signals. By using two ligand:protein ratios (2:1 and 5:1), which give the same distance constraints, a conformation of 3'CMP bound to RNase A was determined (glycosidic torsion angle, chi=-166 degrees ; pseudorotational phase angle, 0 degrees < or = P < or =36 degrees ). Ligand-protein NOESY cross peaks were also observed and used to dock 3'CMP into the binding pocket of the apo-protein (7rsa). After energy minimization, the conformation of the 3'CMP:RNase A complex was similar to the X-ray structure (1 rpf) except that a C3'-endo conformation for the ribose ring (rather than C2'-exo conformation) was found in the TrNOESY structure.  相似文献   

18.
Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.  相似文献   

19.
20.
This study reports the application of peptide linker in the construction of bi‐functional formate dehydrogenase (FDH) and leucine dehydrogenase (LeuDH) enzymatic complex for efficient cofactor regeneration and L‐tert leucine (L‐tle) biotransformation. Seven FDH‐LeuDH fusion enzymes with different peptide linker were successfully developed and displayed both parental enzyme activities. The incorporation order of FDH and LeuDH was investigated by predicting three‐dimensional structures of LeuDH‐FDH and FDH‐LeuDH models using the I‐TASSER server. The enzymatic characterization showed that insertion of rigid peptide linker obtained better activity and thermal stability in comparison with flexible peptide linker. The production rate of fusion enzymatic complex with suitable flexible peptide linker was increased by 1.2 times compared with free enzyme mixture. Moreover, structural analysis of FDH and LeuDH suggested the secondary structure of the N‐, C‐terminal domain and their relative positions to functional domains was also greatly relevant to the catalytic properties of the fusion enzymatic complex. The results show that rigid peptide linker could ensure the independent folding of moieties and stabilized enzyme structure, while the flexible peptide linker was likely to bring enzyme moieties in close proximity for superior cofactor channeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号