首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Ca addition to Cd, Cr and Pb solutions on the nuclear and cytoplasmic dry mass content and its concentration as well as on these organelles dimensions were studied in cortex cells of pea roots. Ca alone, at the concentration 10(-8)M brought about a decrease (in comparison to water) in the dry mass content of nuclei and its concentration, but the increment was almost twice in the dry mass content of cytoplasm; however, it has no significant effect on its concentration. Ca ions addition does not change the surface area of nuclei except the 1st and 5th mm segments but causes a doubling of the area occupied by cytoplasm. In response to Ca addition to Cd or Cr solutions a further diminution of nuclear dry mass content takes place. Only in the case of Pb nuclear dry mass increases in the 7th mm or is similar in remaining root segments. The diminution of nuclear dry mass content due to Ca presence in metal solutions is accompanied by a lowering in its concentration, although in the presence of Cd and Pb the diminution is not significant. Ca ions addition results in an increase in cytoplasmic dry mass content. No such regularities were observed in the 1st (Cd, Pb) and 3rd (Cr) root segments. In response to Ca ions the concentration of cytoplasmic dry mass content increased insignificantly in differentiation zone and underwent reducation in the meristematic zone--in the 1st mm (Cr) and 3rd (Cd). After Ca addition to studied metal solutions the decrease in nuclear dimensions was visible only in Cd or Pb treated cells in the 3rd and 7th or in the 1st mm, respectively. An increase in nuclear size occurred only in Cr treated cells in the 7th mm. Enrichment of heavy metals with Ca caused the marked enlargement in cytoplasmic area in differentiation zone but the increment in it in meristematic zone was observed only in Cd (1st, 3rd) and Cr (1st) treated cells.  相似文献   

2.
The cortex cells of pea roots (Pisum sativum L.) grown for 144 h in the presence of cadmium, chromium and lead at the concentration 10(-4) M were the object of the present studies. Applied metals reduced dry mass content and concentration of nuclei in meristematic and differentiation zones. Chromium only enhanced nuclear mass concentration in the differentiation zone. The metals also made dry mass content and concentration of cytoplasm reduce, but they diminished mostly the concentration of cytoplasm in the meristematic zone and its dry mass in differentiation zone. Stimulation of cytoplasmic dry mass concentration was visible in the 1st mm (Cr) and 7th mm (Cd). Moreover, chromium caused a marked increase of cytoplasmic dry mass content in the 3rd mm of root. The studied metals reduced nuclear size, calculated as surface area, in the meristematic and differentiation zones. The increment of nuclear dimensions was observed only in the 1-3rd mm (Pb), 3rd (Cr) and 7th mm (Cd). In the presence of the applied metals the surface area of cytoplasm increased only in the 3rd mm and in 5th mm (chromium only). The present observations have shown that the toxicity of studied metals is as follows; Cd greater than Pb greater than Cr (nucleus - dry mass content and concentration, cytoplasmic area), Pb greater than Cd greater than Cr (cytoplasmic dry mass content and concentration and Cd greater than Cr greater than Pb (nuclear dimensions).  相似文献   

3.
Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants   总被引:1,自引:0,他引:1  
Tobacco (Nicotiana tabacum L. var. xanthi) seedlings were treated with aqueous solutions of lead nitrate (Pb2+) at concentrations ranging from 0.4 mM to 2.4 mM for 24 h and from 25 microM to 200 microM for 7 days. The DNA damage measured by the comet assay was high in the root nuclei, but in the leaf nuclei a slight but significant increase in DNA damage could be demonstrated only after a 7-day treatment with 200 microM Pb2+. In tobacco plants growing for 6 weeks in soil polluted with Pb2+ severe toxic effects, expressed by the decrease in leaf area, and a slight but significant increase in DNA damage were observed. The tobacco plants with increased levels of DNA damage were severely injured and showed stunted growth, distorted leaves and brown root tips. The frequency of somatic mutations in tobacco plants growing in the Pb2+-polluted soil did not significantly increase. Analytical studies by inductively coupled plasma optical emission spectrometry demonstrate that after a 24-h treatment of tobacco with 2.4 mM Pb2+, the accumulation of the heavy metal is 40-fold higher in the roots than in the above-ground biomass. Low Pb2+ accumulation in the above-ground parts may explain the lower levels or the absence of Pb2+-induced DNA damage in leaves.  相似文献   

4.
Biosorption of heavy metals such as Pb2+, Ni2+, Cd2+, Cu2+, Cr3+ and Zn2+ by petiolar felt-sheath of palm (PFP) from contaminated water was examined. PFP was found to efficiently remove all the toxic metal ions with selectivity order of Pb2+ > Cd2+ > Cu2+ > Zn2+ > Ni2+ > Cr3+. The uptake was rapid, with more than 70% completed within 15 min. The bound metal ions were successfully desorbed and the PFP fibrous-biomass remained effective after several adsorption-desorption cycles.  相似文献   

5.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

6.
The effects of cadmium (Cd) administration on primary root growth, mitotic activity of apical meristems, mitotic aberrations and percentage of nucleus ploidy classes of differentiated roots were examined in Pisum sativum L. cv. Frisson. Cadmium caused a reduction of root length related to concentration, with an almost complete block of growth in plants treated with 250 μM Cd, from 24 h of treatment. Root lengthening is generally related to apical meristem activity, however, in the examined pea plants, mitotic activity was suppressed by 2.5 and 25 μM Cd treatment, while the highest Cd concentration, 250 μM, caused the occurrence of mitotic figures consisting almost exclusively of prophases. The lack of relation between root lengthening and mitotic activity was explained by the meristematic activity in the first period of treatment and by a different cell elongation. Lower (0.25, 0.5 and 1 μM), non-blocking Cd concentrations induced a number of mitotic aberrations, mainly consisting of sticky metaphases and anaphase bridges, whose frequency increased with Cd concentration. Besides, Cd induced variations of the percentages of nucleus populations in the differentiated roots, increasing the percentage of 4C nuclei and decreasing that of 2C. The mechanisms involved in the nuclear response to Cd, and the possible relations between Cd alteration of meristem cell activity and nuclear ploidy of differentiated cells are discussed.  相似文献   

7.
A total of 57 (36 and 21) Azotobacter chroococcum were isolated from wheat (Triticum aestivum) rhizospheric soil irrigated with industrial wastewater (about a decade) and ground water (uncontaminated) and characterized on the basis of morphological, cultural and biochemical characteristics. Rhizospheric soils were analyzed for metal concentrations by atomic absorption spectrophotometery and the test soil samples were contaminated with Fe, Zn, Cu, Cr, Ni and Pb. All the isolates of A. chroococcum were tested for their resistance against Hg2+, Cd2+, Cu2+, Cr3+, Cr6+, Zn2+, Ni2+ and Pb2+. Among 36 isolates of Azotobacter from soil irrigated with industrial wastewater, 94.4% were resistant to Pb2+ and Hg2+ and 86.1%, 77.5% and 63.8% were resistant to Zn2+, Cr6+ and Cr3+ respectively. The highest minimum inhibitory concentration of 200 microg/ml for Hg2+ and 1600 microg/ml for other metals were observed against these bacteria from soil. The incidences of metal resistance and MICs of metals for A. chroococcum from wastewater irrigated soil were significantly different to those of uncontaminated soil. All A. chroococcum isolates were tested for their resistance against 11 commonly used antibiotics/drugs. 91.6% were found to be resistant against nitrofurantoin while 86.4% and 80.5% were found to be resistant against polymyxin-B and co-trimoxazole respectively. Agarose gel electrophoresis using the miniprep method for plasmid isolation revealed that these isolates harboured plasmids of molecular weights 58.8 and 64.5 kb using EcoRI and HindIII digests of X DNA and undigested X DNA as standard markers.  相似文献   

8.
DNA synthesis in cell nuclei and organelles in the root apicalmeristem of rice was analysed by anti-BrdU immunofluorescencemicroscopy to determine whether there is a specific order ofthese events in monocot roots. In the root meristem, organelleDNAs were synthesized in a specific region in the distal partof the root apical meristem, and were not synthesized in theroot meristem‘s proximal region or the elongation zone.In contrast, cell nuclear DNA was synthesized throughout theroot apical meristem, except in the quiescent centre. In theroot cap of rice, DNA synthesis in both cell nuclei and organellenucleoids was detected only in the two layers of cells at theproximal end, which is a striking characteristic of monocotyledonousplants. Moreover, to determine quantitatively the activity ofDNA synthesis in cell nuclei and organelle nucleoids in micro-scalesections of plant tissues, we developed novel techniques formicro-scale hybridization and immuno-detection analysis. Atthe distal end of the root apical meristem, DNA levels of plastidsand mitochondria were 4-fold and 5-fold greater than those inthe elongation zone, respectively. Intracellular organelle DNAlevels dropped rapidly as the distance from the root tip increased.The activity of organelle DNA synthesis in the distal end ofthe root apical meristem was about 10-fold greater than thatin the elongation zone. Our present results confirm that nuclearand organelle DNA synthesis are not synchronized, but the latteroccurs preferentially before multiple cell divisions. Key words: Organelle DNA synthesis, organelle nucleoids (organelle nuclei), root apical meristem, anti-bromo-deoxyuridine immunofluorescence microscopy, rice.  相似文献   

9.
Summary Cell dedifferentiation was induced inVicia faba root tissues by removing the whole root meristem (decapitation) and the behaviour of the nuclear DNA in the dedifferentiating cells was studied by means of cytophotometric and autoradiographic analyses. Cytophotometric determination after Feulgen-staining showed that: 1. the vast majority of nuclei in differentiated cells were in the DNA postsynthetic phase, but their Feulgen absorption was lower than that of DNA postsynthetic nuclei (G2, 4 C) in the meristem; 2. such a Feulgen absorption was detected in certain nuclei after root decapitation; 3. all the mitoses in the dedifferentiating tissues were diploid, fully matching the Feulgen absorption of mitoses in the meristem.After3H-thymidine (3H-T) feeding of the decapitated roots and autoradiography, the following results were obtained: 1. two populations of labeled nuclei, characterized by two different levels of scattered labeling occurred in dedifferentiating tissues, slightly labeled nuclei being much more numerous than heavily labeled nuclei; 2. the percentage of labeled nuclei was much greater than that of DNA presynthetic nuclei in the root tissues; 3. almost all the mitoses were labeled after a 16-hour3H-T feeding; 4. the percentage of slightly labeled nuclei paralleled that of dedifferentiating cells; 5. the duration of the DNA synthesis phase and that of the gap between completion of DNA synthesis and mitosis differed in heavily and slightly labeled nuclei; 6. all nuclei which entered DNA synthesis also entered mitosis.These results are interpreted to mean that: 1. after decapitation, two different DNA syntheses occur in the dedifferentiating root tissues ofV. faba: DNA reduplication in cells which dedifferentiate starting from a DNA presynthetic nuclear condition (heavily labeled nuclei) and extra DNA synthesis in cells which dedifferentiate starting from a DNA postsynthetic nuclear condition (slightly labeled nuclei); 2. extra DNA synthesis is required in these dedifferentiating cells for entry into mitosis.  相似文献   

10.
重金属对水稻和小麦DNA甲基化水平的影响   总被引:25,自引:0,他引:25  
和对照相比,0.025(或0.05)-0.1mmol/L的Cu^2 (或0.05)-1.0mmol/L的Cd^2 或Hg^2 导致水稻(或小麦)叶DNA中的5-甲基胞嘧啶百分含量大幅度上升;当Cu^2 浓度>0.1mmol/L时,小麦和水稻叶DNA中5-甲基胞嘧啶的百分含量随Cu^2 浓度的增高略有下降,但仍高于对照。0.1-1.0mmol/L的Cu^2 ,Cd^2 和Hg^2 也导致小麦穗DNA为5-甲基胞嘧啶的百分含量随Cu^2 ,Cd^ 和Cd^2 能使小麦和水稻根系DNA中5-甲基胞嘧啶的百分含量显著高于对照,而0.1-1.0mmol/L的Hg^2 以及1.0mmol/L的Cu^2 和Cd^2 则造成小麦和水稻根系DNA中5-甲基胞嘧啶的百分含量显著低于对照。  相似文献   

11.
Hypoxia-induced changes in net H+, K+ and O2 fluxes across the plasma membrane (PM) of epidermal root cells were measured using the non-invasive microelectrode ion flux measurement (MIFE) system in elongation, meristem and mature root zones of two barley (Hordeum vulgare L.) varieties contrasting in their waterlogging (WL) tolerance. The ultimate goal of this study was to shed light on the mechanisms underlying effects of WL on plant nutrient acquisition and mechanisms of WL tolerance in barley. Our measurements revealed that functionally different barley root zones have rather different O2 requirements, with the highest O2 influx being in the elongation zone of the root at about 1 mm from the tip. Oxygen deprivation has qualitatively different effects on the activity of PM ion transporters in mature and elongation zones. In the mature zone, hypoxic treatment caused a very sharp decline in K+ uptake in the WL sensitive variety Naso Nijo, but did not reduce K+ influx in the WL tolerant TX9425 variety. In the elongation zone, onset of hypoxia enhanced K+ uptake from roots of both cultivars. Pharmacological experiments suggested that hypoxia-induced K+ flux responses are likely to be mediated by both K(+) -inward- (KIR) and non-selective cation channels (NSCC) in the elongation zone, while in the mature zone K(+) -outward- (KOR) channels are the key contributors. Overall, our results suggest that oxygen deprivation has an immediate and substantial effect on root ion flux patterns, and that this effect is different in WL-sensitive and WL-tolerant cultivars. To what extent this difference in ion flux response to hypoxia is a factor conferring WL tolerance in barley remains to be answered in future studies.  相似文献   

12.
The behavior of cell nuclei, mitochondrial nucleoids (mt-nucleoids) and plastid nucleoids (ptnucleoids) was studied in the root apical meristem of Arabidopsis thaliana. Samples were embedded in Technovit 7100 resin, cut into thin sections and stained with 4′-6-diamidino-2-phenylindole for light-microscopic autoradiography and microphotometry. Synthesis of cell nuclear DNA and cell division were both active in the root apical meristem between 0 μm and 300 μm from the central cells. It is estimated that the cells generated in the lower part of the root apical meristem enter the elongation zone after at least four divisions. Throughout the entire meristematic zone, individual cells had mitochondria which contained 1–5 mt-nucleoids. The number of mitochondria increased gradually from 65 to 200 in the meristem of the central cylinder. Therefore, throughout the meristem, individual mitochondria divided either once or twice per mitotic cycle. By contrast, based on the incorporation of [3H]thymidine into organelle nucleoids, syntheses of mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) occurred independently of the mitotic cycle and mainly in a restricted region (i.e., the lower part of the root apical meristem). Fluorimetry, using a videointensified microscope photon-counting system, revealed that the amount of mtDNA per mt-nucleoid in the cells in the lower part of the meristem, where mtDNA synthesis was active, corresponded to more than 1 Mbp. By contrast, in the meristematic cells just below the elongation zone of the root tip, the amount of mtDNA per mt-nucleoid fell to approximately 170 kbp. These findings strongly indicate that the amount of mtDNA per mitochondrion, which has been synthesized in the lower part of the meristem, is gradually reduced as a result of continual mitochondrial divisions during low levels of mtDNA synthesis. This phenomenon would explain why differentiated cells in the elongation zone have mitochondria that contain only extremely small amounts of mtDNA. This work was supported by a Grant-in Aid (T.K.) for Special Research on Priority Areas (Project No. 02242102, Cellular and Molecular Basis for Reproduction Processes in Plants) from the Ministry of Education, Science and Culture of Japan and by a Grant-in Aid (T.K.) for Original and Creative Research Project on Biotechnology from the Research Council, Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

13.
The behaviour of cell nuclei and organelle nucleoids (organellenuclei) was studied in the root apical meristem of 3-d-old seedlingsof Arabidopsis thaliana (Col.). Samples were embedded in Technovit7100 resin, cut into thin sections and stained with 4'-6-diamidino-2-phenylindole(DAPI) for observation of DNA. DNA synthesis in cell nucleiand organelle nucleoids was investigated using the incorporationof [3H] thymidine or 5-bromo-2'-deoxyuridine (BrdU). Incorporated[3H] thymidine and BrdU were detected by microautoradiographyor immunofiuorescence microscopy, respectively. Central cellsand cells just above the central cells of the quiescent centre(QC) showed an extremely low activity of DNA synthesis. However,DNA synthesis occurred in at least one organelle nucleoid ofall cells in the QC within 24 h. This suggests the cells inthe QC are quiescent with regard to nuclear DNA synthesis, butnot with regard to the organelle nucleoids. Key words: Arabidopsis thaliana, quiescent centre, root apical meristem, mitochondrial nucleoid (nuclei), plastid nucleoid (nuclei)  相似文献   

14.
铅和镉污染对大羽藓生理特性的影响   总被引:12,自引:0,他引:12  
This paper dealt with the effects of 2+,2+ and their combined pollution on the contents of chlorophyll,potassium and calcium in Thuidium cymbifolium.The results showed that except at 0.1 mg 2+-1,the chlorophyll content decreased with increasing 2+ and 2+ concentrations,which was 18% of the control at 100 mg 2+-1,and decreased by 48.6% at 200 mg 2+-1.The potassium and calcium contents also decreased with increasing pollutants concentrations,being decreased by 61.1% at 100 mg 2+-1.2+ had a stronger toxicity than 2+,and the toxicity of their combined pollution was stronger than that of each pollutant.2+ could increase the toxicity of 2+.  相似文献   

15.
重金属胁迫条件下空心莲子草的生长和营养特征分析   总被引:1,自引:0,他引:1  
空心莲子草是一种常见的水生植物,并能在重金属污染的水体或附近土壤中生长.本研究发现,空心莲子草能富集6种常见的重金属元素,其富集能力为:Zn2+>Mn2+>Pb2+>Cu2+>Cd2+>Cr3+.高浓度(1 mmol/L) Cu2+、Mn2+、Zn2+和Cr3+ 等重金属胁迫处理条件下,空心莲子草的根冠比增加,生物干重、总根长和总根表面积都相应降低.此外,高浓度(1 mmol/L) Pb2+、Cd2+、Cu2+或Zn2+分别胁迫处理条件下,空心莲子草的K+、Ca+和Mg+等元素的含量变化差异显著(P<0.05).以上研究表明,空心莲子草通过改变体内钾钙镁等重要生长元素营养情况来适应重金属污染的胁迫,有很强的富集重金属元素的能力,进而降低污染、净化水体.空心莲子草对重金属污染的生长响应及体内重要矿物元素营养特性之间的相互关系,可能为重金属污染的水土生物修复提供理论依据.  相似文献   

16.
Cell dedifferentiation has been induced in Vicia faba roots by removing the whole meristem (decapitation). When centrifuged to equilibrium in CsCl density gradient, the DNA from dedifferentiating tissues forms a heavier satellite, not occurring in the DNA from differentiated tissues. Most of the radioactivity after [3H]thymidine feeding is found in the satellite DNA. Its sequences have a well defined nuclear localization, as shown by in situ hybridization experiments. These results indicate amplification of G + C-rich nuclear DNA sequences during cell dedifferentiation.  相似文献   

17.
赵树兰  多立安 《广西植物》2008,28(1):100-106
采用砂培法,研究了匍茎翦股颖对Cu2+、Zn2+、Cd2+与Pb2+胁迫的生长响应及阈限浓度,结果表明:种子萌发率随着4种重金属浓度的增加而下降。对株高的影响是当重金属浓度小于100mg/L时会促进株高生长,高于100mg/L则产生抑制作用。Cu2+显著抑制根系生长,并随浓度的增加抑制效应愈加显著;在Cu2+浓度为600mg/L时匍茎翦股颖的根长比对照下降了93.75%。Cu2+、Zn2+、Pb2+浓度小于200mg/L时会促进地上生物量的增加,但高于200mg/L时,地上生物量会随着3种重金属的增加而减少。Cu2+、Zn2+浓度小于100mg/L或Cd2+、Pb2+浓度小于200mg/L会增加叶绿素的含量,高浓度会降低叶绿素的含量;Cd2+在浓度为600mg/L时显著降低叶绿素含量,与对照相比,下降了43.55%。匍茎翦股颖生长的综合效应分析表明,匍茎翦股颖对Cu2+胁迫最敏感,具有较低的阈限浓度,而Zn2+胁迫对匍茎翦股颖的生长影响最小,阈限浓度相对较高。  相似文献   

18.
Plants of Indian mustard (Brassica juncea L.) were exposed to different concentrations (15, 30, 60, 120 microM) of (Cd, Cr, Cu, Pb) for 28 and 56 d for accumulation and detoxification studies. Metal accumulation in roots and shoots were analyzed and it was observed that roots accumulated a significant amount of Cd (1980 microg g(-1) dry weight), Cr (1540 microg g(-1) dry weight), Cu (1995 microg g(-1) dry weight), and Pb (2040 microg g(-1) dry weight) after 56 d of exposure, though in shoot this was 1110, 618, 795, and 409 microg g(-1) dry weight of Cd, Cr, Cu, and Pb, respectively. In order to assess detoxification mechanisms, non-protein thiols (NP-SH), glutathione (GSH) and phytochelatins (PCs) were analyzed in plants. An increase in the quantity of NP-SH (9.55), GSH (8.30), and PCs (1.25) micromol g(-1) FW were found at 15 microM of Cd, however, a gradual decline in quantity was observed from 15 microM of Cd onwards, after 56 d of exposure. For genotoxicity in plants, cytogenetic end-points such as mitotic index (MI), micronucleus formation (MN), mitotic aberrations (MA) and chromosome aberrations (CA) were examined in root meristem cells of B. juncea. Exposure of Cd revealed a significant (P < 0.05) inhibition of MI, induction of MA, CA, and MN in the root tips for 24 h. However, cells examined at 24 h post-exposure showed concentration-wise recovery in all the endpoints. The data revealed that Indian mustard could be used as a potential accumulator of Cd, Cr, Cu, and Pb due to a good tolerance mechanisms provided by combined/concerted action of NP-SH, GSH, and PCs. Also, exposure of Cd can cause genotoxic effects in B. juncea L. through chromosomal mutations, MA, and MN formation.  相似文献   

19.
Salix alba L. and Populus×euroamericana cv. Robusta cuttings were grown in 10 μM Cd(NO3)2 (direct treatment) or in Knop solution and afterwards in Cd(NO3)2 (indirect treatment). Cd impact on rooting of directly treated plants and its impact on normally formed roots and shoots of indirectly treated plants were studied. The cumulative length, number and biomass of willow roots, pigment and starch contents, leaf net photosynthetic rate and dry mass/leaf area ratio of willow leaves were positively influenced by indirect treatment. However, indirectly treated poplars were more sensitive to Cd than directly treated ones. Indirect treatment lowered root Cd uptake in willow, Cd accumulation in cuttings of both species and Cd accumulation in poplar shoots. Cd-caused structural changes were similar in both species and in both treatments. Root apices, rhizodermis and cortex were the most seriously damaged root parts. In directly treated willow, the structure of central cylinder (0.5 – 1 cm from apex) remained unchanged in contrast to indirectly treated plants. Formation of cambium close to the apex indicated shortening of root elongation zone of indirectly treated plants. Directly Cd-treated poplar roots exhibited unusual defence activity of root apical meristem and accumulation of darkly stained material around central cylinder. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Changes in the elongation of root cells during the negative (away from the salt) or positive (towards the salt) chemotropic bending of roots induced by the unilateral application of agar blocks (1 mm3) with 10–3and 10–2M Cd(NO3)2solutions to the meristem zone of the root were studied. The root bending was not accompanied by differential changes in the number of cells that elongated during the 3-h period of chemical stimulation. The bending was only due to differential changes in the cell elongation rates. In most chemically stimulated roots, both concentrations of Cd(NO3)2solutions inhibited cell elongation at the stimulated and nonstimulated sides. Cell elongation was inhibited by 10–2M Cd(NO3)2mainly on the stimulated side of the roots, hence, the roots bent towards the salt. On the contrary, 10–3M Cd(NO3)2inhibited cell elongation mainly at the nonstimulated side of the roots. As a result, the roots bent away from the salt, i.e., in the direction opposite to that expected in the case of the direct inhibition of cell growth by Cd(NO3)2. It is concluded that the root chemotropisms induced by the above two Cd(NO3)2concentrations are, correspondingly, of a passive or active nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号