首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to non-pathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility.  相似文献   

3.
Willer Y  Müller B  Bumann D 《PloS one》2012,7(5):e35992
The intestinal immune system mounts inflammatory responses to pathogens but tolerates harmless commensal microbiota. Various mechanisms for pathogen/non-pathogen discrimination have been proposed but their general relevance for inflammation control is unclear. Here, we compared intestinal responses to pathogenic Salmonella and non-pathogenic E. coli. Both microbes entered intestinal Peyer's patches and, surprisingly, induced qualitatively and quantitatively similar initial inflammatory responses revealing a striking discrimination failure. Diverging inflammatory responses only occurred when Salmonella subsequently proliferated and induced escalating neutrophil infiltration, while harmless E. coli was rapidly cleared from the tissue and inflammation resolved. Transient intestinal inflammation induced by harmless E. coli tolerized against subsequent exposure thereby preventing chronic inflammation during repeated exposure. These data revealed a striking failure of the intestinal immune system to discriminate pathogens from harmless microbes based on distinct molecular signatures. Instead, appropriate intestinal responses to gut microbiota might be ensured by immediate inflammatory responses to any rise in microbial tissue loads, and desensitization after bacterial clearance.  相似文献   

4.
Summary Eukaryotic cells live in a relatively comfortable equilibrium with a wide variety of microbes. However, while many of the cohabiting microorganisms are harmless or even beneficial to the eukaryotic host, a number of prokaryotes have evolved the capacity to invade and replicate within host cells, thereby becoming potentially pathogenic. To be able to cope with potential pathogens, most organisms have developed several host defense mechanisms. First, microbes can be internalized and destroyed by a number of cell types of an innate immune system in a rather aspecific manner. Second, more complex organisms possess additionally an adaptive immune system that is capable of eliminating hazardous microbes in a highly specific manner. This review describes recent progress in our understanding of how pathogens interact with cells of the immune system, resulting in activation of the immune system or, for certain microorganisms, in the evasion of host defense reactions.  相似文献   

5.
Recent advances have highlighted the outstanding role of the innate immune system for instructing adaptive immunity. Translating this knowledge into successful immunotherapies like vaccines, however, has proven to be a difficult task. This essay is based on the hypothesis that immune responses are tightly scaled to the infectious threat posed by a given microbial stimulus. A meticulous immunological risk-assessment process is therefore instrumental for eliciting well-balanced responses and maintaining immune homeostasis. The immune system makes fine distinctions, for example, between live and dead bacteria, or pathogenic and non-pathogenic microorganisms. Here, I discuss recent evidence for some of the mechanisms underlying these distinctions and speculate on strategies for therapeutically targeting the immunological risk-assessment machinery.  相似文献   

6.
Plants are continually exposed to a variety of potentially pathogenic microbes, and the interactions between plants and pathogenic invaders determine the outcome, disease or disease resistance. To defend themselves, plants have developed a sophisticated immune system. Unlike animals, however, they do not have specialized immune cells and, thus all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. Using genetic, genomic and biochemical methods, tremendous advances have been made in understanding how plants recognize pathogens and mount effective defenses. The primary immune response is induced by microbe-associated molecular patterns (MAMPs). MAMP receptors recognize the presence of probable pathogens and evoke defense. In the co-evolution of plant-microbe interactions, pathogens gained the ability to make and deliver effector proteins to suppress MAMP-induced defense responses. In response to effector proteins, plants acquired R-proteins to directly or indirectly monitor the presence of effector proteins and activate an effective defense response. In this review we will describe and discuss the plant immune responses induced by two types of elicitors, PAMPs and effector proteins.  相似文献   

7.
Of PAMPs and effectors: the blurred PTI-ETI dichotomy   总被引:1,自引:0,他引:1  
Typically, pathogen-associated molecular patterns (PAMPs) are considered to be conserved throughout classes of microbes and to contribute to general microbial fitness, whereas effectors are species, race, or strain specific and contribute to pathogen virulence. Both types of molecule can trigger plant immunity, designated PAMP-triggered and effector-triggered immunity (PTI and ETI, respectively). However, not all microbial defense activators conform to the common distinction between PAMPs and effectors. For example, some effectors display wide distribution, while some PAMPs are rather narrowly conserved or contribute to pathogen virulence. As effectors may elicit defense responses and PAMPs may be required for virulence, single components cannot exclusively be referred to by one of the two terms. Therefore, we put forward that the distinction between PAMPs and effectors, between PAMP receptors and resistance proteins, and, therefore, also between PTI and ETI, cannot strictly be maintained. Rather, as illustrated by examples provided here, there is a continuum between PTI and ETI. We argue that plant resistance is determined by immune receptors that recognize appropriate ligands to activate defense, the amplitude of which is likely determined by the level required for effective immunity.  相似文献   

8.
Plant roots interact with an enormous diversity of commensal, mutualistic, and pathogenic microbes, which poses a big challenge to roots to distinguish beneficial microbes from harmful ones. Plants can effectively ward off pathogens following immune recognition of conserved microbe‐associated molecular patterns (MAMPs). However, such immune elicitors are essentially not different from those of neutral and beneficial microbes that are abundantly present in the root microbiome. Recent studies indicate that the plant immune system plays an active role in influencing rhizosphere microbiome composition. Moreover, it has become increasingly clear that root‐invading beneficial microbes, including rhizobia and arbuscular mycorrhiza, evade or suppress host immunity to establish a mutualistic relationship with their host. Evidence is accumulating that many free‐living rhizosphere microbiota members can suppress root immune responses, highlighting root immune suppression as an important function of the root microbiome. Thus, the gate keeping functions of the plant immune system are not restricted to warding off root‐invading pathogens but also extend to rhizosphere microbiota, likely to promote colonization by beneficial microbes and prevent growth‐defense tradeoffs triggered by the MAMP‐rich rhizosphere environment.  相似文献   

9.
The increasing interest in the human microbiota raises some interesting questions about the terminology we use to describe some of the structures and strategies employed by commensal and pathogenic microbes to compete in these complex biological ecosystems. For example, all microbes arriving in the alimentary tract face the task of surviving passage through the stomach, coping with bile, interacting with the immune system, competing with the established microbiota, and obtaining sufficient nutrients to gain a foothold in this hostile environment. It is not surprising then that many gastrointestinal microbes (both pathogens and commensals) use similar strategies to overcome the challenges associated with this particular biological niche. Given that many of these structures and strategies were discovered and characterized in pathogens and because they often play important roles in establishing and maintaining an infection, they have often been characterized as virulence factors. It would be misleading to describe the same strategies and structures found in harmless commensals as “virulence factors,” since they represent a sine qua non for life in the gastrointestinal tract. It may be time to reconsider and refer to them as “niche factors,” both in terms of providing scientific accuracy but also in light of the growing interest in using gut microbes as probiotics, where the distinction between virulence factors and niche factors is likely to be very important from a regulatory perspective.  相似文献   

10.
Immune responses, either constitutive or induced, are costly. An alternative defence strategy may be based on behavioural responses. For example, avoidance behaviour reduces contact with pathogens and thus the risk of infection as well as the requirement of immune system activation. Similarly, if pathogens are taken up orally, preferential feeding of pathogen-free food may be advantageous. Behavioural defences have been found in many animals, including the nematode Caenorhabditis elegans. We here tested nematodes from a laboratory based evolution experiment which had either coevolved with their microparasite Bacillus thuringiensis (BT) or evolved under control conditions. After 48 generations, coevolved populations were more sensitive to food conditions: in comparison with the controls, they reduced feeding activity in the presence of pathogenic BT strains while at the same time increasing it in the presence of non-pathogenic strains. We conclude that host-parasite coevolution can drive changes in the behavioural responsiveness to bacterial microbes, potentially leading to an increased defence against pathogens.  相似文献   

11.
Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including vesicle trafficking, endocytosis and the spatial distribution of organelles and protein complexes. For years, the actin cytoskeleton has been assumed to play a role in plant innate immunity against fungi and oomycetes, based largely on static images and pharmacological studies. To date, however, there is little evidence that the host-cell actin cytoskeleton participates in responses to phytopathogenic bacteria. Here, we quantified the spatiotemporal changes in host-cell cytoskeletal architecture during the immune response to pathogenic and non-pathogenic strains of Pseudomonas syringae pv. tomato DC3000. Two distinct changes to host cytoskeletal arrays were observed that correspond to distinct phases of plant-bacterial interactions i.e. the perception of microbe-associated molecular patterns (MAMPs) during pattern-triggered immunity (PTI) and perturbations by effector proteins during effector-triggered susceptibility (ETS). We demonstrate that an immediate increase in actin filament abundance is a conserved and novel component of PTI. Notably, treatment of leaves with a MAMP peptide mimic was sufficient to elicit a rapid change in actin organization in epidermal cells, and this actin response required the host-cell MAMP receptor kinase complex, including FLS2, BAK1 and BIK1. Finally, we found that actin polymerization is necessary for the increase in actin filament density and that blocking this increase with the actin-disrupting drug latrunculin B leads to enhanced susceptibility of host plants to pathogenic and non-pathogenic bacteria.  相似文献   

12.
张碧云  杨红玲  汪攀  孙云章 《微生物学报》2021,61(10):3046-3058
鱼类肠道中存在大量微生物,对于维持宿主健康具有重要作用。鱼类免疫系统能够监视并调控肠道微生物组成,维持肠道菌群稳态。同时,鱼类肠道共生微生物调节鱼类免疫系统,抑制病原微生物的过度增殖,保证宿主的健康。本文回顾了鱼类肠道微生物与宿主免疫系统相互作用的研究进展,重点介绍了宿主免疫系统识别肠道微生物、塑造肠道菌群以及益生菌对宿主免疫和肠道菌群的调控等,提出了理想的益生菌应该来自动物自身胃肠道,生产中应谨慎选用非宿主来源的益生菌,以期为推动鱼类肠道功能微生物开发和应用提供理论支撑。  相似文献   

13.
Mucosae constitute the major entry for most microbial pathogens but also innocuous antigens derived from ingested food, airborne matter or commensal bacteria. A large and highly specialized innate and adaptative mucosal immune system protects the mucosal surfaces and the body interior from potential injuries from the environment. The mucosal immune system has developed a variety of immune mechanisms to discriminate between non-pathogenic and pathogenic invaders. It is able to maintain tolerance against the plethora of environmental antigens and to induce potent protective immunity to avoid mucosal colonisation and organism invasion by dangerous microbial pathogens. Mucosal immunisation with appropriate antigens and immunostimulatory molecules may induce potent protective immunity against harmful pathogens. Alternatively, mucosally-induced tolerance against auto-antigens or allergens may be generated by mucosal administration of these antigens alone or with immunomodulators potentiating regulatory responses. Here, we review the properties of the mucosal immune system and briefly discuss the advances in the development of mucosal vaccines for protection against infections and for the treatment of inflammatory disorders such as autoimmune diseases or type I allergies.  相似文献   

14.
In Taiwan, leptospirosis is caused mainly by Leptospira santarosai serovar shermani. Suppression subtractive hybridization was employed to isolate DNA fragments present in pathogenic L. santarosai serovar shermani but absent in non-pathogenic L. biflexa serovar patoc. Analysis of 23 subtracted DNA clones revealed 25 gene fragments by BLASTX program. Eight clones showed similarity to transposase genes and three clones displayed homology with either translation or metabolism related genes. Four clones were similar to outer membrane protein, penicillin-binding protein, CreD-like protein and the protein of two-component signal transduction system, respectively. One clone had TPR repeat domain and five clones had significant similarity with hypothetical proteins of unknown functions. The remaining four clones exhibited no homology with any known genes. These results indicate that subtractive hybridization can successfully identify genes that are absent from the non-pathogenic Leptospira and provide a starting point for clarifying the differential genes expression between pathogenic and non-pathogenic Leptospira species.  相似文献   

15.
Leptospires, the agents of leptospirosis, exert tropism for the central nervous system, in the course of mammal infection. We evaluated the interaction between murine microglial cells and strains of pathogenic L. interrogans leptospires and non-pathogenic L. biflexa leptospires, mainly by flow cytometric assays. In the absence of opsonic conditions microglia are capable of ingesting--even quite slowly--the spirochetes and killing the non-pathogenic strain. The adhesion to microglia, which is quick and relevant for all the strains, does not involve the CR3 integrin receptor. These findings suggest that the murine microglia--in non opsonic conditions in vitro--do not effectively clear the pathogenic leptospires.  相似文献   

16.
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.  相似文献   

17.
Plants have to molecularly sense invasions from pathogenic microbes to activate their built-in immune responses. There are two different types of sensor proteins, called immune receptors. They are the indispensible molecular instruments to perceive non-self molecules derived from microbes. A genetic defect of the immune receptors fails to activate immune responses, consequently resulting in disease susceptibility. In general, membrane-bound immune receptors, known to be pattern recognition receptors and exposed on the outside of the cell, recognize microbe-associated molecular patterns from pathogens. Intracellular immune receptors, also called plant disease resistance proteins, directly perceive pathogen-derived effectors or indirectly recognize the effector-mediated modification of host proteins inside the cells. In this review, we introduce the classes and functions of pattern recognition receptors that were molecularly identified so far. Additionally, we summarize recent progresses in structural functions and molecular dynamics of the plant disease resistance proteins.  相似文献   

18.
Signaling in plant disease resistance and symbiosis   总被引:1,自引:0,他引:1  
Interactions between plants and microbes result in plant disease and symbiosis. The former causes considerable economic damage in modern agriculture, while the latter has produced great beneficial effects to our agriculture system. Comparison of the two interactions has revealed that a common panel of signaling pathways might participate in the establishment of the equilibrium between plant and microbes or its break-up. Plants appear to detect both pathogenic and symbiotic microbes by a similar set of genes. All symbiotic microbes seem to produce effectors to overcome plant basal defenses and it is speculated that symbiotic effectors have functions similar to pathogenic ones. Signaling molecules, salicylic acid (SA),jasmonic acid (JA) and ethylene (ET), are involved in both plant defense and symbiosis. Switching off signals contributing to deterioration of disease symptom would establish a new equilibrium between plant and pathogenic microbes. This would facilitate the development of strategies for durable disease resistance.  相似文献   

19.
Photorhabdus are insect pathogenic bacteria that replicate within the insect haemocoel following release from their entomopathogenic nematode symbionts. To investigate how they escape the cellular immune response we examined the effects of two strains of Photorhabdus, W14 and K122, on Manduca sexta phagocytes (haemocytes), in vitro and in vivo. Following injection of Esherichia coli into Manduca larvae, these non-pathogenic bacteria are rapidly cleared from the haemolymph and the number of free haemocytes transiently increases. In contrast, following injection of either strain of pathogenic Photorhabdus, the bacteria grow rapidly while the number of haemocytes decreases dramatically. In vitro incubation of haemocytes with either Photorhabdus supernatant reduced haemocyte viability, and the W14 supernatant caused distinct changes in the actin cytoskeleton morphology of different haemocyte cell types. In phagocytosis assays both Photorhabdus strains can inhibit their own phagocytosis whether the bacterial cells are alive or dead. Further, the supernatant of W14 also contains a factor capable of inhibiting the phagocytosis of labelled E. coli. Together these results suggest that Photorhabdus evades the cellular immune response by killing haemocytes and suppressing phagocytosis by mechanisms that differ between strains.  相似文献   

20.
The ToxA gene of Pyrenophora tritici-repentis encodes a host-selective toxin (Ptr ToxA) that has been shown to confer pathogenicity when used to transform a non-pathogenic wheat isolate. Major karyotype polymorphisms between pathogenic and non-pathogenic strains, and to a lesser extent among pathogenic strains, and among non-pathogenic strains were identified. ToxA was localized to a 3.0 Mb chromosome. PCR-based subtraction was carried out with the ToxA chromosome as tester DNA and genomic DNA from a non-pathogenic isolate as driver DNA. Seven of 8 single-copy probes that originated from the 3.0 Mb chromosome could be assigned to a 2.75 Mb chromosome of a non-pathogenic isolate. Nine different repetitive DNA probes originated from the 3.0 Mb chromosome, including sequences that correspond to known fungal transposable elements. Two additional single-copy probes that originated from a 3.4 Mb chromosome were unique to the pathogens and they correspond to a peptide synthetase gene. Our findings suggest substantial differences between pathogenic and non-pathogenic isolates of P. tritici-repentis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号