首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated whether cellular responses to various stress conditions are regulated in synchronization with the ultradian rhythm of respiratory-fermentative metabolism which is coupled to the cell cycle rhythm in continuous cultures of the yeast Saccharomyces cerevisiae. The cellular resistance to heat oscillated with a peak at the late respiro-fermentative phase, which approximately corresponds to the unbudding period of the cell cycle. Cellular resistance to H(2)O(2) and that to the superoxide-generating agent menadione oscillated in the same phase as that of heat resistance. The resistance to cadmium and that to 1-chloro-2,4-dinitrobenzene, an uncoupler of energy metabolism in mitochondria, both oscillated with a peak advanced by about 80 degrees relative to that of heat resistance, approximately covering the respiro-fermentative phase. Thus, cellular resistance to various stresses in S. cerevisiae oscillated in synchronization with the metabolic oscillation in the continuous culture.  相似文献   

2.
Eukaryotic cell proliferation is controlled by specific growth factors and the availability of essential nutrients. If either of these signals is lacking, cells may enter into a specialized nondividing resting state, known as stationary phase or G(0). The entry into such resting states is typically accompanied by a dramatic decrease in the overall growth rate and an increased resistance to a variety of environmental stresses. Since most cells spend most of their life in these quiescent states, it is important that we develop a full understanding of the biology of the stationary phase/G(0) cell. This knowledge would provide important insights into the control of two of the most fundamental aspects of eukaryotic cell biology: cell proliferation and long-term cell survival. This review will discuss some recent advances in our understanding of the stationary phase of growth in the budding yeast, Saccharomyces cerevisiae.  相似文献   

3.
Stationary phase in the yeast Saccharomyces cerevisiae.   总被引:23,自引:0,他引:23  
Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant cells that are conditionally defective only for the resumption of proliferation from stationary phase provides evidence that stationary phase is a unique developmental state. Strains with mutations affecting entry into and survival during stationary phase have also been isolated, and the mutations have been shown to affect at least seven different cellular processes: (i) signal transduction, (ii) protein synthesis, (iii) protein N-terminal acetylation, (iv) protein turnover, (v) protein secretion, (vi) membrane biosynthesis, and (vii) cell polarity. The exact nature of the relationship between these processes and survival during stationary phase remains to be elucidated. We propose that cell cycle arrest coordinated with the ability to remain viable in the absence of additional nutrients provides a good operational definition of starvation-induced stationary phase.  相似文献   

4.
Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Selenium (Se) is an essential trace element for humans, animals and some bacteria which is important for many cellular processes. Se's bio-activity is mainly influenced by its chemical form and dose. The use of Se supplements in the human diet emphasizes the need to establish both the beneficial and detrimental doses of each Se compound. We have evaluated three different Se compounds, sodium selenite (SeL), selenomethionine (SeM) and Se-methylselenocysteine (SeMC), with respect to their potential DNA damaging effects. The budding yeast Saccharomyces cerevisiae was used as a model system to test the toxic and mutagenic effects as well as the DNA double-strand breakage potency of these Se compounds in both exponentially growing and stationary yeast cells. Only SeL manifested any significant toxic effects in the yeast which were more pronounced in the exponentially growing cells than in those cells in the stationary phase of growth. The toxic effects of SeL were however accompanied with the pro-mutagenic effects in the stationary cell phase of growth. The toxic and mutagenic effects of SeL are likely associated with the ability of this compound to generate DNA double-strand breaks (DSB). We also show that SeL significantly increased frame-shift mutations, especially 1-4 bp deletions, in the CAN1 mutational spectrum of the yeast genome when compared to untreated control. We propose that SeL is acting as an oxidizing agent in S. cerevisiae producing superoxide and oxidative damage to DNA accounting for the observed DSB and cell death.  相似文献   

5.
6.
7.
R Knoechel  E M Quinn 《Cytometry》1989,10(5):612-621
Track autoradiographic analysis of photosynthetic radiocarbon incorporation at the cellular level indicated that the carbon uptake rate and carbon pool size of exponentially growing (log phase) Scenedesmus cells was threefold that of stationary phase cells, while carbon turnover rates were similar. Carbon fixation was uncoupled from growth and cell division in the stationary phase cells, which were larger and contained less chlorophyll per unit volume than log phase cells. Changes in the temporal pattern of isotope incorporation were evident at the cell level prior to the cessation of division and transition to stationary phase, while bulk carbon fixation responded only the second day after cell division ceased. The carbon uptake patterns of a marine nanoplankter from a nutrient-enriched natural sample resembled that of log phase cells while the control population pattern resembled that of stationary cells. The physical, biochemical, and metabolic differences between log and stationary phase cells are potentially measurable by flow cytometry procedures currently in use and under development. The use of flow cytometry to sort cell types for analysis by track autoradiography and subsequent correlation of metabolic characteristics with flow cytometry signatures is a feasible means of investigating the heterogeneity of phytoplankton metabolic state in the marine environment.  相似文献   

8.
Starvation of cells of the yeast Saccharomyces cerevisiae causes cessation of proliferation and acquisition of characteristic physiological properties. The stationary-phase state that results represents a unique developmental state, as shown by a novel conditional phenotype (M. A. Drebot, G. C. Johnston, and R. A. Singer, Proc. Natl. Acad. Sci. USA 84:7948-7952, 1987): mutant cells cannot proliferate at the restrictive temperature when stimulated to reenter the mitotic cell cycle from stationary phase but are unaffected and continue proliferation indefinitely if transferred to the restrictive temperature during exponential growth. We have exploited this reentry mutant phenotype to demonstrate that the same stationary-phase state is generated by nitrogen, sulfur, or carbon starvation and by the cdc25-1 mutation, which conditionally impairs the cyclic AMP-mediated signal transduction pathway. We also show that heat shock, a treatment that elicits physiological perturbations associated with stationary phase, does not cause cells to enter stationary phase. The physiological properties associated with stationary phase therefore do not result from residence in stationary phase but from the stress conditions that bring about stationary phase.  相似文献   

9.
考察了Saccharomyces cerevisiae FL1酵母菌株在固体平板上的生长动力学过程及2种渗透剂对不同生理阶段的酵母细胞增殖行为的影响.建立了一个数学模型,该模型可以预测固体培养过程中生物量随时间的变化情况,结果表明,模型预测值与实际值能够很好符合,将该模型应用于考察氯化钠和甘油对细胞增殖行为的影响,结果揭示,氯化钠显著抑制指数生长期和平衡期细胞分裂,降低酵母比生长速率和生物量;甘油对平衡期细胞增殖有促进作用,提高比生长速率和生物量;甘油与氯化钠之间存在协同作用,0.15M甘油不能减弱高盐的应激作用。  相似文献   

10.
The assembly of cytochrome c oxidase (COX) is essential for a functional mitochondrial respiratory chain, although the consequences of a loss of assembled COX at yeast stationary phase, an excellent model for terminally differentiated cells in humans, remain largely unexamined. In this study, we show that a wild-type respiratory competent yeast strain at stationary phase is characterized by a decreased oxidative capacity, as seen by a reduction in the amount of assembled COX and by a decrease in protein levels of several COX assembly factors. In contrast, loss of assembled COX results in the decreased abundance of many mitochondrial proteins at stationary phase, which is likely due to decreased membrane potential and changes in mitophagy. In addition to an altered mitochondrial proteome, COX assembly mutants display unexpected changes in markers of cellular oxidative stress at stationary phase. Our results suggest that mitochondria may not be a major source of reactive oxygen species at stationary phase in cells lacking an intact respiratory chain.  相似文献   

11.
Chao-Wen Wang 《Autophagy》2014,10(11):2075-2076
Delivery of cellular contents to yeast vacuoles/mammalian lysosomes via autophagy ensures long-term cell survival and extends life span. When cultured yeast cells are grown for a prolonged period of time to enter stationary phase, a nondividing state mimicking quiescence, vacuolar membrane proteins partition into either one of the vacuolar microdomains, liquid-ordered (Lo) or liquid-disordered (Ld). We show that during the transition to stationary phase, lipid droplets (LDs), organelles originated from the endoplasmic reticulum (ER), undergo lateral movement to reach the vacuolar surface and are confined within the specific Lo microdomain underlying the network of vacuolar quasi-symmetrical micodomains. Stationary phase lipophagy uses the autophagy machineries to modify the sterol-enriched Lo microdomain to engulf LDs and subsequently deposits the LD-containing vesicles inside the vacuole lumen, which is a pathway morphologically resembling microautophagy. Moreover, stationary phase lipophagy supplies quiescent yeast cells with sterols to sustain phase partitioning of lipids for vacuolar microdomain maintenance. A feed forward loop model was proposed to depict that the sterols boosted by LDs via stationary phase lipophagy promote the Lo microdomain maintenance that in turn stimulates lipophagy.  相似文献   

12.
《Autophagy》2013,9(11):2075-2076
Delivery of cellular contents to yeast vacuoles/mammalian lysosomes via autophagy ensures long-term cell survival and extends life span. When cultured yeast cells are grown for a prolonged period of time to enter stationary phase, a nondividing state mimicking quiescence, vacuolar membrane proteins partition into either one of the vacuolar microdomains, liquid-ordered (Lo) or liquid-disordered (Ld). We show that during the transition to stationary phase, lipid droplets (LDs), organelles originated from the endoplasmic reticulum (ER), undergo lateral movement to reach the vacuolar surface and are confined within the specific Lo microdomain underlying the network of vacuolar quasi-symmetrical micodomains. Stationary phase lipophagy uses the autophagy machineries to modify the sterol-enriched Lo microdomain to engulf LDs and subsequently deposits the LD-containing vesicles inside the vacuole lumen, which is a pathway morphologically resembling microautophagy. Moreover, stationary phase lipophagy supplies quiescent yeast cells with sterols to sustain phase partitioning of lipids for vacuolar microdomain maintenance. A feed forward loop model was proposed to depict that the sterols boosted by LDs via stationary phase lipophagy promote the Lo microdomain maintenance that in turn stimulates lipophagy.  相似文献   

13.
Toxic compounds including acids, furans, and phenols (AFP) were generated from the pretreatment of lignocellulose. We cultivated Saccharomyces cerevisiae cells in a batch mode, besides the cell culture of original yeast strain in AFP-free medium which was referred as C0, three independent subcultures were cultivated under multiple inhibitors AFP and were referred as C1, C2, and C3 in time sequence. Comparing to C0, the cell density was lowered while the ethanol yield was maintained stably in the three yeast cultures under AFP stress, and the lag phase of C1 was extended while the lag phases of C2 and C3 were not extended. In proteomic analysis, 194 and 215 unique proteins were identified as differently expressed proteins at lag phase and exponential phase, respectively. Specifically, the yeast cells co-regulated protein folding and protein synthesis process to prevent the generation of misfolded proteins and to save cellular energy, they increased the activity of glycolysis, redirected metabolic flux towards phosphate pentose pathway and the biosynthesis of ethanol instead of the biosynthesis of glycerol and acetic acid, and they upregulated several oxidoreductases especially at lag phase and induced programmed cell death at exponential phase. When the yeast cells were cultivated under AFP stress, the new metabolism homeostasis in favor of cellular energy and redox homeostasis was generated in C1, then it was inherited and optimized in C2 and C3, enabling the yeast cells in C2 and C3 to enter the exponential phase in a short period after inoculation, which thus significantly shortened the fermentation time.  相似文献   

14.
In the yeast Saccharomyces cerevisiae as in other eukaryotes non-polar lipids are a reservoir of energy and building blocks for membrane lipid synthesis. The yeast non-polar lipids, triacylglycerols (TG) and steryl esters (SE) are stored in so-called lipid particles/droplets (LP) as biologically inert form of fatty acids and sterols. To understand LP structure and function in more detail we investigated the molecular equipment of this compartment making use of mass spectrometric analysis of lipids (TG, SE, phospholipids) and proteins. We addressed the question whether or not lipid and protein composition of LP influence each other and performed analyses of LP from cells grown on two different carbon sources, glucose and oleate. Growth of cells on oleate caused dramatic cellular changes including accumulation of TG at the expense of SE, enhanced the amount of glycerophospholipids and strongly increased the degree of unsaturation in all lipid classes. Most interestingly, oleate as a carbon source led to adaptation of the LP proteome resulting in the appearance of several novel LP proteins. Localization of these new LP proteins was confirmed by cell fractionation. Proteomes of LP variants from cells grown on glucose or oleate, respectively, were compared and are discussed with emphasis on the different groups of proteins detected through this analysis. In summary, we demonstrate flexibility of the yeast LP lipidome and proteome and the ability of LP to adapt to environmental changes.  相似文献   

15.
The yeast Saccharomyces cerevisiae strain W303 synthesizes in the early logarithmic phase of growth dolichols of 14-18 isoprene residues. The analysis of the polyisoprenoids present in the stationary phase revealed an additional family which proved to be also dolichols but of 19-24 isoprene residues, constituting 39% of the total dolichols. The transfer of early logarithmic phase cells to a starvation medium lacking glucose or nitrogen resulted in the synthesis of the longer chain dolichols. The additional family of dolichols represented 13.8% and 10.3% of total dolichols in the glucose and nitrogen deficient media, respectively. The level of dolichols in yeast cells increased with the age of the cultures. Since both families of dolichols are present in stationary phase cells we postulate that the longer chain dolichols may be responsible for the physico-chemical changes in cellular membranes allowing yeast cells to adapt to nutrient deficient conditions to maintain long-term viability.  相似文献   

16.
Mutations in the budding yeast Saccharomyces cerevisiae define regulatory activities both for the mitotic cell cycle and for resumption of proliferation from the quiescent stationary-phase state. In each case, the regulation of proliferation occurs in the prereplicative interval that precedes the initiation of DNA replication. This regulation is particularly responsive to the nutrient environment and the biosynthetic capacity of the cell. Mutations in components of the cAMP-mediated effector pathway and in components of the biosynthetic machinery itself affect regulation of proliferation within the mitotic cell cycle. In the extreme case of nutrient starvation, cells cease proliferation and enter stationary phase. Mutations in newly defined genes prevent stationary-phase cells from reentering the mitotic cell cycle, but have no effect on proliferating cells. Thus stationary phase represents a unique developmental state, with requirements to resume proliferation that differ from those for the maintenance of proliferation in the mitotic cell cycle.  相似文献   

17.
A proteomic view of cell physiology of Bacillus licheniformis   总被引:2,自引:0,他引:2  
The still ongoing sequencing of Bacillus licheniformis at the G?ttingen Sequencing Laboratory provides the basis for proteome studies of the bacterium. By using two-dimensional (2-D) electrophoresis and protein identification by mass spectrometry, we were able to create master gels for B. licheniformis cells grown either in minimal medium or in complex medium containing about 300 and 180 entries, respectively. With the DECODON Delta 2D software we identified the most abundant protein spots on the gels, which were shown to perform mainly basic metabolic functions in the cell such as translation, amino acid metabolism, glycolysis, and tricarboxylic acid (TCA) cycle. Based on the master gels, we were able to study the regulation of metabolic pathways such as glycolysis and TCA cycle. In cells grown in the presence of glucose a significant increase of the amount of some glycolytic enzymes (TpiA, GapA, Pgk, Pgm, Eno, Pyk) and of the pyruvate dehydrogenase (PdhA-D) was found. At the same time, there is a strong repression of almost all TCA cycle enzymes and of the ATP synthase. Glucose also stimulates the acetate kinase (AckA) and the phosphotransacetylase (Pta) which are known to be involved in the overflow metabolism in B. subtilis. Furthermore, we began developing proteomic signatures for growth of B. licheniformis in complex medium. For this purpose, we compared the proteome pattern of exponentially growing cells with that of cells in different stages during stationary phase. The most obvious proteomic signature indicates that cells during stationary phase are subjected to a severe oxidative stress and a resulting protein stress. Furthermore, the level of many vegetative proteins is strongly reduced when the growth is arrested after entry into stationary phase. The data indicate that proteomics can be a valuable tool to describe the physiological state of B. licheniformis cell populations, e.g., of cells growing in a bioreactor.  相似文献   

18.
Nutrient starvation in the yeast Saccharomyces cerevisiae leads to a number of physiological changes that accompany entry into stationary phase. The expression of genes whose products play a role in stress adaptation is regulated in a manner that allows the cell to sense and respond to changing environmental conditions. We have identified a novel yeast gene, YGP1, that displays homology to the sporulation-specific SPS100 gene. The expression of YGP1 is regulated by nutrient availability. The gene is expressed at a basal level during "respiro-fermentative" (logarithmic) growth. When the glucose concentration in the medium falls below 1%, the YGP1 gene is derepressed and the gene product, gp37, is synthesized at levels up to 50-fold above the basal level. The glucose-sensing mechanism is independent of the SNF1 pathway and does not operate when cells are directly shifted to a low glucose concentration. The expression of YGP1 also responds to the depletion of nitrogen and phosphate, indicating a general response to nutrient deprivation. These results suggest that the YGP1 gene product may be involved in cellular adaptations prior to stationary phase and may be a useful marker protein for monitoring early events associated with the stress response.  相似文献   

19.
Saccharomyces cerevisiae contains a DNA repair methyltransferase (MTase) that repairs O6-methylguanine. Methyl groups are irreversibly transferred from O6-methylguanine in DNA to a 25-kilodalton protein in S. cerevisiae cell extracts, and methyl transfer is accompanied by the formation of S-methylcysteine. The yeast MTase is expressed at approximately 150 molecules/cell in exponentially growing yeast cultures but is not detectable in stationary phase cells. Unlike mammalian and bacterial MTases, the yeast MTase is very temperature-sensitive, having a half-life of about 4 min at 37 degrees C, which may explain why others have failed to detect it. Like other DNA repair MTases, the S. cerevisiae MTase repairs O6-methylguanine more efficiently in double-stranded DNA than in single-stranded DNA. Synthesis of the yeast DNA MTase is apparently not inducible by sublethal exposures to alkylating agent, but rather MTase activity is depleted in cells exposed to low doses of alkylating agent. Judging from its molecular weight and substrate specificity, the yeast DNA MTase is more closely related to mammalian MTases than to Escherichia coli MTases.  相似文献   

20.
We examined the alterations in 20S proteasome homeostasis, protein oxidation, and cell viability that occur during the stationary phase or chronological model of yeast aging. Data in this report demonstrate that proteasome subunit expression is increased, proteasome composition is altered, and levels of individual proteasome proteolytic activities are elevated during stationary phase-induced aging in Saccharomyces cerevisiae. Despite such alterations, a progressive loss of proteasome-mediated protein degradation and a significant increase in protein oxidation were observed in cells maintained under stationary phase conditions. Deletion of UMP1, a gene necessary for 20S proteasome biogenesis, had no effect on cellular viability under normal growth conditions, but impaired the ability of cells to survive under stationary phase conditions. During stationary phase, the levels of oxidized protein increased more rapidly and to higher levels in the mutant lacking UMP1 than in the wild-type cells. Taken together, these data implicate a role for proteasome synthesis and altered 20S proteasome composition in maintaining viability during stationary phase, and demonstrate that even with these modifications a gradual loss of proteasome-mediated protein degradation occurs during stationary phase-induced aging. These data also suggest a role for impaired proteasome-mediated protein degradation in increased protein oxidation and cell death observed during the aging of eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号