首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Origin and Evolution of Cultures. Robert Boyd and Peter J. Richerson. New York: Oxford University Press, 2005. 456 pp.
Not by Genes Alone: How Culture Transformed Human Evolution. Peter J. Richerson and Robert Boyd. Chicago: University of Chicago Press, 2005. 332 pp.  相似文献   

2.
3.
Russian Journal of Developmental Biology - The problem of the origin of the metazoan life cycle is analyzed on the base of various hypotheses on the origin of multicellular animals. According to...  相似文献   

4.
5.
The genetic theory of natural selection proposed by Fisher takes into account differential reproduction success of organisms, which may be estimated by using the Malthusian parameter as fitness. However, the minimum possible value of this parameter depends on ecological stability of an organism, which determines the probability of the survival and participation in reproduction for each viable offspring. In the course of vertical evolution, leading to an increase in the level of biological organization, ecological stability of organisms increases, and this might be accompanied by a decrease in their fitness. In the macroevolutionary process, alterations in ecological stability of organisms, including those responsible for an increase in the level of biological organization, are basic and primary changes whereas alterations in fitness are additional and secondary.  相似文献   

6.
We discuss the origin of life in terms of an RNA World scenario in which the creation of autocatalytic sequences is the key step. Our computational models illustrate that life arises by a rare stochastic event that occurs due to spatially localized concentration fluctuations. This allows the chemical system to jump from a non-living state with very low ribozyme concentration to a living state that is controlled by ribozymes. Once the living state is established locally, it can spread deterministically through the rest of the system. These are generic features also possessed by more complex models with a greater degree of chemical realism.  相似文献   

7.
The common thread of evolution runs through all science disciplines, and the concept of evolution enables students to better understand the nature of the universe and our origins. “Science and the Concept of Evolution” is one of two interdisciplinary science Core courses taken by Dowling College undergraduates as part of their General Education requirements. The course examines basic principles and methods of science by following the concept of evolution from the big bang to the origin and evolution of life. Case studies of leading scientists illustrate how their ideas developed and contributed to the evolution of our understanding of the world. Evidences for physical, chemical, and biological evolution are explored, and students learn to view the evolution of matter and of ideas as a natural process of change over space and time.  相似文献   

8.
Chiara Ceci 《Evolution》2009,2(3):560-563
Two hundred years after his birth, Darwin, originated by the American Museum of Natural History in New York, is the most important exhibition about the English scientist ever organized for the general public. This traveling exhibition has appeared in many versions worldwide, and a study of the relationships between local developers of the various editions of the exhibition underlines how a scientific exhibition and, more generally, science communication can succeed in striking a good equilibrium between universal content and cultural determinants.  相似文献   

9.
To develop a comprehensive cells-first approach to the origin of life, we propose that protocells form spontaneously and that the fission and fusion of these protocells drives the dynamics of their evolution. The fitness criterion for this evolution is taken to be the the stability (conservation) of domains in the protocellular membrane as determined by non-covalent molecular associations between the amphiphiles of the membrane and a subset of the macromolecules in the protocell. In the presence of a source of free energy the macromolecular content of the protocell (co-)evolves as the result of (domain-dependent) membrane-catalysed polymerisation of the prebiotic constituents delivered to the protocell by fusion. The metabolism of the cell therefore (co-)evolves on a rugged fitness landscape. We indicate how domain evolution with the same fitness criterion can potentially give rise to coding. Membrane domains may therefore provide the link between protocells and the RNA/DNA-world.  相似文献   

10.
A generalized autocatalytic model for chiral polymerization is investigated in detail. Apart from enantiomeric cross-inhibition, the model allows for the autogenic (non-catalytic) formation of left and right-handed monomers from a substrate with reaction rates epsilon L and epsilon R, respectively. The spatiotemporal evolution of the net chiral asymmetry is studied for models with several values of the maximum polymer length, N. For N = 2, we study the validity of the adiabatic approximation often cited in the literature. We show that the approximation obtains the correct equilibrium values of the net chirality, but fails to reproduce the short time behavior. We show also that the autogenic term in the full N = 2 model behaves as a control parameter in a chiral symmetry-breaking phase transition leading to full homochirality from racemic initial conditions. We study the dynamics of the N--> infinity model with symmetric (epsilon L = epsilon R) autogenic formation, showing that it only achieves homochirality for epsilon > epsilon c, where epsilon c is an N-dependent critical value. For epsilon 相似文献   

11.
12.
13.
14.
Sea ice occurs abundantly at the polar caps of the Earth and, probably, of many other planets. Its static and dynamic properties that may be important for prebiotic and early biotic reactions are described. It concentrates substrates and has many features that are important for catalytical actions. We propose that it provided optimal conditions for the early replication of nucleic acids and the RNA world. We repeated a famous prebiotic experiment, the poly-uridylic acid-instructed synthesis of polyadenylic acid from adenylic acid imidazolides in artificial sea ice, simulating the dynamic variability of real sea ice by cyclic temperature variation. Poly(A) was obtained in high yield and reached nucleotide chain lengths up to 400 containing predominantly 3′→ 5′ linkages.  相似文献   

15.
Recent successes of systems biology clarified that biological functionality is multilevel. We point out that this fact makes it necessary to revise popular views about macromolecular functions and distinguish between local, physico-chemical and global, biological functions. Our analysis shows that physico-chemical functions are merely tools of biological functionality. This result sheds new light on the origin of cellular life, indicating that in evolutionary history, assignment of biological functions to cellular ingredients plays a crucial role. In this wider picture, even if aggregation of chance mutations of replicator molecules and spontaneously self-assembled proteins led to the formation of a system identical with a living cell in all physical respects but devoid of biological functions, it would remain an inanimate physical system, a pseudo-cell or a zombie-cell but not a viable cell. In the origin of life scenarios, a fundamental circularity arises, since if cells are the minimal units of life, it is apparent that assignments of cellular functions require the presence of cells and vice versa. Resolution of this dilemma requires distinguishing between physico-chemical and biological symbols as well as between physico-chemical and biological information. Our analysis of the concepts of symbol, rule and code suggests that they all rely implicitly on biological laws or principles. We show that the problem is how to establish physico-chemically arbitrary rules assigning biological functions without the presence of living organisms. We propose a solution to that problem with the help of a generalized action principle and biological harnessing of quantum uncertainties. By our proposal, biology is an autonomous science having its own fundamental principle. The biological principle ought not to be regarded as an emergent phenomenon. It can guide chemical evolution towards the biological one, progressively assigning greater complexity and functionality to macromolecules and systems of macromolecules at all levels of organization. This solution explains some perplexing facts and posits a new context for thinking about the problems of the origin of life and mind.  相似文献   

16.
The concept of preadaptation, though useful, continues to trouble evolutionary scientists. Usually, it is treated as if it were really adaptation, prompting such diverse theorists as Gould and Vrba, and Dennett to suggest its removal from evolutionary theory altogether. In this paper, I argue that the as-if sense is ill-founded, and that the sense of preadaptation as a process may be defended as unequivocal and generally useful in evolutionary explanations, even in such problem areas as human evolution.  相似文献   

17.
18.
19.
20.
Modern biology has not yet come to terms with the presence of many organic codes in Nature, despite the fact that we can prove their existence. As a result, it has not yet accepted the idea that the great events of macroevolution were associated with the origin of new organic codes, despite the fact that this is the most parsimonious and logical explanation of those events. This is probably due to the fact that the existence of organic codes in all fundamental processes of life, and in all major transitions in the history of life, has enormous theoretical implications. It requires nothing less than a new theoretical framework, and that kind of change is inevitably slow. There are too many facts to reconsider, too many bits of history to weave together in a new mosaic. But this is what science is about, and the purpose of the present paper is to show that it can be done. More precisely, it is shown that the whole natural history of the brain can be revisited in the light of the organic codes. What is described here is only a bird’s-eye view of brain macroevolution, but it is hoped that the extraordinary potential of the organic codes can nevertheless come through. The paper contains also another message. The organic codes prove that life is based on semiosis, and are in fact the components of organic semiosis, the first and the most diffused form of semiosis on Earth, but not the only one. It will be shown that the evolution of the brain was accompanied by the development of two new types of sign processes. More precisely, it gave origin first to interpretive semiosis, mostly in vertebrates, and then to cultural semiosis, in our species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号