首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
2.
3.
4.
Interaction of the sex-lethal RNA binding domains with RNA.   总被引:6,自引:2,他引:4       下载免费PDF全文
R Kanaar  A L Lee  D Z Rudner  D E Wemmer    D C Rio 《The EMBO journal》1995,14(18):4530-4539
Sex determination and X chromosome dosage compensation in Drosophila melanogaster are directed by the Sex-lethal (Sxl) protein. In part, Sxl functions by regulating the splicing of the transformer pre-mRNA by binding to a 3' splice site polypyrimidine tract. Polypyrimidine tracts are essential for splicing of metazoan pre-mRNAs. To unravel the mechanism of splicing regulation at polypyrimidine tracts we analyzed the interaction of Sxl with RNA. The RNA binding activity of Sxl was mapped to the two ribonucleoprotein consensus sequence domains of the protein. Quantitation of binding showed that both RNA binding domains (RBDs) were required in cis for site-specific RNA binding. Individual RBDs interacted with RNA more weakly and had lost the ability to discriminate between wild-type and mutant transformer polypyrimidine tracts. Structural elements in one of the RBDs that are likely to interact with a polypyrimidine tract were identified using nuclear magnetic resonance techniques. In addition, our data suggest that multiple imino protons of the transformer polypyrimidine tract were involved in hydrogen bonding. Interestingly, in vitro Sxl bound with equal affinity to polypyrimidine tracts of pre-mRNAs that it does not regulate in vivo. We discuss the implications of this finding for the mechanism through which Sxl may gain selectivity for particular polypyrimidine tracts in vivo.  相似文献   

5.
6.
Regulation of Drosophila sex determination and X-chromosome dosage compensation in response to the X-chromosome/autosome (X/A) balance of the zygote is shown to require proper functioning of both the da+ gene in the mother and the Sxl+ gene in the zygote. Previous studies led to the hypothesis that zygotic Sxl+ alleles are differentially active in females (XXAA) vs males (XYAA) in response to the X/A balance, and that maternal da+ gene product acts as a positive regulator in this connection. Sxl+ activity was proposed to impose the female developmental sequence on cells which would follow the male sequence in its absence. Important predictions of this proposal are verified. This study focuses primarily on the phenotype of triploid intersexes (XXAAA, X/A = 0.67). They are shown here to survive effects of da and Sxl mutations that would be lethal to diploids. The ambiguous X/A signal of intersexes normally causes them to develop as phenotypic mosaics of male and female tissue. Loss of maternal da+ or zygotic Sxl+ gene function shifts their somatic sexual phenotype to the male alternative. A gain-of-function mutation at Sxl has the opposite effect, imposing female development regardless of the maternal genotype with respect to da. It also reduces their rate of X-linked gene expression. The effects of a duplication of Sxl+ resemble those of the constitutive Sxl allele, but are less extreme. The role of these genes in the process of X-chromosome dosage compensation is inferred indirectly from the strict dependence of the mutations' lethal effects on the X/A balance in haploids, diploids, and triploids, and more directly from the effects of the mutations on the phenotypes of the X-linked neomorphic mutations, Bar and Hairy-wing. The relationship of da+ and Sxl+ gene functions to those of other sex-specific lethal loci in D. melanogaster, and to sex determination mechanisms in other species, is discussed.  相似文献   

7.
In the past two decades, scientists have elucidated the molecular mechanisms behind Drosophila sex determination and dosage compensation. These two processes are controlled essentially by two different sets of genes, which have in common a master regulatory gene, Sex-lethal (Sxl). Sxl encodes one of the best-characterized members of the family of RNA binding proteins. The analysis of different mechanisms involved in the regulation of the three identified Sxl target genes (Sex-lethal itself, transformer, and male specific lethal-2) has contributed to a better understanding of translation repression, as well as constitutive and alternative splicing. Studies using the Drosophila system have identified the features of the protein that contribute to its target specificity and regulatory functions. In this article, we review the existing data concerning Sxl protein, its biological functions, and the regulation of its target genes.  相似文献   

8.
9.
In Drosophila melanogaster, Sex-lethal (Sxl) controls autoregulation and sexual differentiation by alternative splicing but regulates dosage compensation by translational repression. To elucidate how Sxl functions in splicing and translational regulation, we have ectopically expressed a full-length Sxl protein (Sx.FL) and a protein lacking the N-terminal 40 amino acids (Sx-N). The Sx.FL protein recapitulates the activity of Sxl gain-of-function mutations, as it is both sex transforming and lethal in males. In contrast, the Sx-N protein unlinks the sex-transforming and male-lethal effects of Sxl. The Sx-N proteins are compromised in splicing functions required for sexual differentiation, displaying only partial autoregulatory activity and almost no sex-transforming activity. On the other hand, the Sx-N protein does retain substantial dosage compensation function and kills males almost as effectively as the Sx.FL protein. In the course of our analysis of the Sx.FL and Sx-N transgenes, we have also uncovered a novel, negative autoregulatory activity, in which Sxl proteins bind to the 3' untranslated region of Sxl mRNAs and decrease Sxl protein expression. This negative autoregulatory activity may be a homeostasis mechanism.  相似文献   

10.
The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80 amino acid C-terminus. In the studies reported here we have examined the functional properties of the different Sxl protein domains in RNA binding and in protein:protein interactions. The two RRM domains are responsible for RNA binding. Specificity in the recognition of target RNAs requires both RRM domains, and proteins which consist of the single domains or duplicated domains have anomalous RNA recognition properties. Moreover, the length of the linker between domains can affect RNA recognition properties. Our results indicate that the two RRM domains mediate Sxl:Sxl protein interactions, and that these interactions probably occur both in cis and trans. We speculate that cis interactions between R1 and R2 play a role in RNA recognition by the Sxl protein, while trans interactions stabilize complex formation on target RNAs that contain two or more closely spaced binding sites. Finally, we show that the interaction of Sxl with the snRNP protein Snf is mediated by the R1 RRM domain.  相似文献   

11.
12.
13.
C Cronmiller  T W Cline 《Cell》1987,48(3):479-487
As a regulator of the female-specific gene Sxl, da+ provides an essential maternal component in the control of sex determination and dosage compensation; nevertheless, neither the maternal nor zygotic phenotypes of the original mutant da allele is sex-specific. Here we clarify the role of da+ in Drosophila development, finding: this sex determination gene is indeed pleiotropic; zygotic functioning of da+ is essential in both sexes for somatic cell development, but not for germ cell development; da female sterility results from a somatic, rather than germ-line, defect; and expression of da+ in the maternal germ line is required only for daughters in the subsequent generation, as expected for a specific regulator of Sxl+. These conclusions follow from the characterization of new da null alleles isolated by a selection for defects in maternally acting positive regulators of Sxl.  相似文献   

14.
In Drosophila, flies with two X chromosomes are females, with one X chromosome, males. We investigated the presence of sex determining factors on the X chromosome by constructing genotypes with one X and various X-chromosomal duplications. We found that female determining factors are not evenly distributed along the X chromosome as had been previously postulated. A distal duplication covering 35% of the X chromosome promotes female differentiation, a much larger proximal duplication of 60% results in male differentiation. The strong feminizing effect of distal duplications originates from a small segment that, when present in two doses, activates Sxl, a key gene for sex determination and dosage compensation. Our results suggest that Sxl can be activated to intermediate levels.  相似文献   

15.
16.
Pal Bhadra M  Bhadra U  Birchler JA 《Genetics》2006,174(3):1151-1159
A major model system for the study of evolutionary divergence between closely related species has been the unisexual lethality resulting from reciprocal crosses of Drosophila melanogaster and D. simulans. Sex-lethal (Sxl), a critical gene for sex determination, is misregulated in these hybrids. In hybrid males from D. melanogaster mothers, there is an abnormal expression of Sxl and a failure of localization of the male-specific lethal (MSL) complex to the X chromosome, which causes changes in gene expression. Introduction of a Sxl mutation into this hybrid genotype will allow expression of the MSL complex but there is no sequestration to the X chromosome. Lethal hybrid rescue (Lhr), which allows hybrid males from this cross to survive, corrects the SXL and MSL defects. The reciprocal cross of D. simulans mothers by D. melanogaster males exhibits underexpression of Sxl in embryos.  相似文献   

17.
18.
19.
Notch (N) signaling is used for cell-fate determination in many different developmental contexts. Here, we show that the master control gene for sex determination in Drosophila melanogaster, Sex-lethal (Sxl), negatively regulates the N-signaling pathway in females. In genetic assays, reducing Sxl activity suppresses the phenotypic effects of N mutations, while increasing Sxl activity enhances the effects. Sxl appears to negatively regulate the pathway by reducing N protein accumulation, and higher levels of N are found in Sxl(-) clones than in adjacent wild-type cells. The inhibition of N expression does not depend on the known downstream targets of Sxl; however, we find that Sxl protein can bind to N mRNAs. Finally, our results indicate that downregulation of the N pathway by Sxl contributes to sex-specific differences in morphology and suggest that it may also play an important role in follicle cell specification during oogenesis.  相似文献   

20.
The Sex-lethal (SXL) protein belongs to the family of RNA-binding proteins and is involved in the regulation of pre-mRNA splicing. SXL has undergone an obvious change of function during the evolution of the insect clade. The gene has acquired a pivotal role in the sex-determining pathway of Drosophila, although it does not act as a sex determiner in non-drosophilids. We collected SXL sequences of insect species ranging from the pea aphid (Acyrtho siphom pisum) to Drosophila melanogaster by searching published articles, sequencing cDNAs, and exploiting homology searches in public EST and whole-genome databases. The SXL protein has moderately conserved N- and C-terminal regions and a well-conserved central region including 2 RNA recognition motifs. Our phylogenetic analysis shows that a single orthologue of the Drosophila Sex-lethal (Sxl) gene is present in the genomes of the malaria mosquito Anopheles gambiae, the honeybee Apis mellifera, the silkworm Bombyx mori, and the red flour beetle Tribolium castaneum. The D. melanogaster, D. erecta, and D. pseudoobscura genomes, however, contain 2 paralogous genes, Sxl and CG3056, which are orthologous to the Anopheles, Apis, Bombyx, and Tribolium Sxl. Hence, a duplication in the fly clade generated Sxl and CG3056. Our hypothesis maintains that one of the genes, Sxl, adopted the new function of sex determiner in Drosophila, whereas the other, CG3056, continued to serve some or all of the yet-unknown ancestral functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号