首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Assigning functions to unknown proteins is one of the most important problems in proteomics. Several approaches have used protein-protein interaction data to predict protein functions. We previously developed a Markov random field (MRF) based method to infer a protein's functions using protein-protein interaction data and the functional annotations of its protein interaction partners. In the original model, only direct interactions were considered and each function was considered separately. In this study, we develop a new model which extends direct interactions to all neighboring proteins, and one function to multiple functions. The goal is to understand a protein's function based on information on all the neighboring proteins in the interaction network. We first developed a novel kernel logistic regression (KLR) method based on diffusion kernels for protein interaction networks. The diffusion kernels provide means to incorporate all neighbors of proteins in the network. Second, we identified a set of functions that are highly correlated with the function of interest, referred to as the correlated functions, using the chi-square test. Third, the correlated functions were incorporated into our new KLR model. Fourth, we extended our model by incorporating multiple biological data sources such as protein domains, protein complexes, and gene expressions by converting them into networks. We showed that the KLR approach of incorporating all protein neighbors significantly improved the accuracy of protein function predictions over the MRF model. The incorporation of multiple data sets also improved prediction accuracy. The prediction accuracy is comparable to another protein function classifier based on the support vector machine (SVM), using a diffusion kernel. The advantages of the KLR model include its simplicity as well as its ability to explore the contribution of neighbors to the functions of proteins of interest.  相似文献   

2.
To understand the function of protein complexes and their association with biological processes, a lot of studies have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering algorithms and further analysis of their interactions.In addressing and solving these problems we present a novel random walk based algorithm that converts the incomplete and binary PPI network into a protein-protein topological similarity matrix (PP-TS matrix). We believe that if two proteins share some high-order topological similarities they are likely to be interacting with each other. Using the obtained PP-TS matrix, we constructed and used weighted networks to further study and analyze the interaction among proteins. Specifically, we applied a fully automated community structure finding algorithm (Auto-HQcut) on the obtained weighted network to cluster protein complexes. We then analyzed the protein complexes for significance in biological processes. To help visualize and analyze these protein complexes we also developed an interface that displays the resulting complexes as well as the characteristics associated with each complex.Applying our approach to a yeast protein-protein interaction network, we found that the predicted protein-protein interaction pairs with high topological similarities have more significant biological relevance than the original protein-protein interactions pairs. When we compared our PPI network reconstruction algorithm with other existing algorithms using gene ontology and gene co-expression, our algorithm produced the highest similarity scores. Also, our predicted protein complexes showed higher accuracy measure compared to the other protein complex predictions.  相似文献   

3.
Predicting interactions in protein networks by completing defective cliques   总被引:6,自引:0,他引:6  
Datasets obtained by large-scale, high-throughput methods for detecting protein-protein interactions typically suffer from a relatively high level of noise. We describe a novel method for improving the quality of these datasets by predicting missed protein-protein interactions, using only the topology of the protein interaction network observed by the large-scale experiment. The central idea of the method is to search the protein interaction network for defective cliques (nearly complete complexes of pairwise interacting proteins), and predict the interactions that complete them. We formulate an algorithm for applying this method to large-scale networks, and show that in practice it is efficient and has good predictive performance. More information can be found on our website http://topnet.gersteinlab.org/clique/ CONTACT: Mark.Gerstein@yale.edu SUPPLEMENTARY INFORMATION: Supplementary Materials are available at Bioinformatics online.  相似文献   

4.
We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.  相似文献   

5.
MOTIVATION: Much research has been dedicated to large-scale protein interaction networks including the analysis of scale-free topologies, network modules and the relation of domain-domain to protein-protein interaction networks. Identifying locally significant proteins that mediate the function of modules is still an open problem. Method: We use a layered clustering algorithm for interaction networks, which groups proteins by the similarity of their direct neighborhoods. We identify locally significant proteins, called mediators, which link different clusters. We apply the algorithm to a yeast network. RESULTS: Clusters and mediators are organized in hierarchies, where clusters are mediated by and act as mediators for other clusters. We compare the clusters and mediators to known yeast complexes and find agreement with precision of 71% and recall of 61%. We analyzed the functions, processes and locations of mediators and clusters. We found that 55% of mediators to a cluster are enriched with a set of diverse processes and locations, often related to translocation of biomolecules. Additionally, 82% of clusters are enriched with one or more functions. The important role of mediators is further corroborated by a comparatively higher degree of conservation across genomes. We illustrate the above findings with an example of membrane protein translocation from the cytoplasm to the inner nuclear membrane. AVAILABILITY: All software is freely available under Supplementary information.  相似文献   

6.
MOTIVATION:The development of experimental methods for genome scale analysis of molecular interaction networks has made possible new approaches to inferring protein function. This paper describes a method of assigning functions based on a probabilistic analysis of graph neighborhoods in a protein-protein interaction network. The method exploits the fact that graph neighbors are more likely to share functions than nodes which are not neighbors. A binomial model of local neighbor function labeling probability is combined with a Markov random field propagation algorithm to assign function probabilities for proteins in the network. RESULTS: We applied the method to a protein-protein interaction dataset for the yeast Saccharomyces cerevisiae using the Gene Ontology (GO) terms as function labels. The method reconstructed known GO term assignments with high precision, and produced putative GO assignments to 320 proteins that currently lack GO annotation, which represents about 10% of the unlabeled proteins in S. cerevisiae.  相似文献   

7.
Using indirect protein-protein interactions for protein complex prediction   总被引:1,自引:0,他引:1  
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.  相似文献   

8.
Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S.cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature.  相似文献   

9.
Lee AJ  Lin MC  Hsu CM 《Bio Systems》2011,103(3):392-399
Many methods have been proposed for mining protein complexes from a protein-protein interaction network; however, most of them focus on unweighted networks and cannot find overlapping protein complexes. Since one protein may serve different roles within different functional groups, mining overlapping protein complexes in a weighted protein-protein interaction network has attracted more and more attention recently. In this paper, we propose an effective method, called MDOS (Mining Dense Overlapping Subgraphs), for mining dense overlapping protein complexes (subgraphs) in a weighted protein-protein interaction network. The proposed method can integrate the information about known complexes into a weighted protein-protein interaction network to improve the mining results. The experiment results show that our method mines more known complexes and has higher sensitivity and accuracy than the CODENSE and MCL methods.  相似文献   

10.
Prediction of protein function using protein-protein interaction data.   总被引:8,自引:0,他引:8  
Assigning functions to novel proteins is one of the most important problems in the postgenomic era. Several approaches have been applied to this problem, including the analysis of gene expression patterns, phylogenetic profiles, protein fusions, and protein-protein interactions. In this paper, we develop a novel approach that employs the theory of Markov random fields to infer a protein's functions using protein-protein interaction data and the functional annotations of protein's interaction partners. For each function of interest and protein, we predict the probability that the protein has such function using Bayesian approaches. Unlike other available approaches for protein annotation in which a protein has or does not have a function of interest, we give a probability for having the function. This probability indicates how confident we are about the prediction. We employ our method to predict protein functions based on "biochemical function," "subcellular location," and "cellular role" for yeast proteins defined in the Yeast Proteome Database (YPD, www.incyte.com), using the protein-protein interaction data from the Munich Information Center for Protein Sequences (MIPS, mips.gsf.de). We show that our approach outperforms other available methods for function prediction based on protein interaction data. The supplementary data is available at www-hto.usc.edu/~msms/ProteinFunction.  相似文献   

11.
随着越来越多的蛋白质相互作用数据被公布,网络比对在预测蛋白质的新功能和推测蛋白质网络进化历史上发挥着越来越重要的作用。但是,目前主要的网络比对方法要么忽略蛋白质的同源信息或蛋白质网络的结构信息,要么采用启发式算法。文章作者通过将网络比对转化为线性规划问题给出了一个精确的网络比对算法,并且针对水痘病毒和卡波济(氏)肉瘤病毒的蛋白质相互作用数据进行了比对分析。  相似文献   

12.
Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein interaction networks. We also describe the commonly used experimental methods to construct these networks, and the insights that can be gained from these networks. We then discuss the recent transition from graph theory based networks to structure based protein-protein interaction networks and the advantages of the latter over the former, using two networks as examples. We further discuss the usefulness of structure based protein-protein interaction networks for drug discovery, with a special emphasis on drug repositioning.  相似文献   

13.
14.
The interpretation of large-scale protein network data depends on our ability to identify significant substructures in the data, a computationally intensive task. Here we adapt and extend efficient techniques for finding paths and trees in graphs to the problem of identifying pathways in protein interaction networks. We present linear-time algorithms for finding paths and trees in networks under several biologically motivated constraints. We apply our methodology to search for protein pathways in the yeast protein-protein interaction network. We demonstrate that our algorithm is capable of reconstructing known signaling pathways and identifying functionally enriched paths and trees in an unsupervised manner. The algorithm is very efficient, computing optimal paths of length 8 within minutes and paths of length 10 in about three hours.  相似文献   

15.
One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods.  相似文献   

16.
MOTIVATION: Large amounts of protein and domain interaction data are being produced by experimental high-throughput techniques and computational approaches. To gain insight into the value of the provided data, we used our new similarity measure based on the Gene Ontology (GO) to evaluate the molecular functions and biological processes of interacting proteins or domains. The applied measure particularly addresses the frequent annotation of proteins or domains with multiple GO terms. RESULTS: Using our similarity measure, we compare predicted domain-domain and human protein-protein interactions with experimentally derived interactions. The results show that our similarity measure is of significant benefit in quality assessment and confidence ranking of domain and protein networks. We also derive useful confidence score thresholds for dividing domain interaction predictions into subsets of low and high confidence. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

17.
MOTIVATION: Biological processes in cells are properly performed by gene regulations, signal transductions and interactions between proteins. To understand such molecular networks, we propose a statistical method to estimate gene regulatory networks and protein-protein interaction networks simultaneously from DNA microarray data, protein-protein interaction data and other genome-wide data. RESULTS: We unify Bayesian networks and Markov networks for estimating gene regulatory networks and protein-protein interaction networks according to the reliability of each biological information source. Through the simultaneous construction of gene regulatory networks and protein-protein interaction networks of Saccharomyces cerevisiae cell cycle, we predict the role of several genes whose functions are currently unknown. By using our probabilistic model, we can detect false positives of high-throughput data, such as yeast two-hybrid data. In a genome-wide experiment, we find possible gene regulatory relationships and protein-protein interactions between large protein complexes that underlie complex regulatory mechanisms of biological processes.  相似文献   

18.
DIP: the database of interacting proteins   总被引:24,自引:3,他引:21  
The Database of Interacting Proteins (DIP; http://dip.doe-mbi.ucla.edu) is a database that documents experimentally determined protein-protein interactions. This database is intended to provide the scientific community with a comprehensive and integrated tool for browsing and efficiently extracting information about protein interactions and interaction networks in biological processes. Beyond cataloging details of protein-protein interactions, the DIP is useful for understanding protein function and protein-protein relationships, studying the properties of networks of interacting proteins, benchmarking predictions of protein-protein interactions, and studying the evolution of protein-protein interactions.  相似文献   

19.
Local network alignment is an important component of the analysis of protein-protein interaction networks that may lead to the identification of evolutionary related complexes. We present AlignNemo, a new algorithm that, given the networks of two organisms, uncovers subnetworks of proteins that relate in biological function and topology of interactions. The discovered conserved subnetworks have a general topology and need not to correspond to specific interaction patterns, so that they more closely fit the models of functional complexes proposed in the literature. The algorithm is able to handle sparse interaction data with an expansion process that at each step explores the local topology of the networks beyond the proteins directly interacting with the current solution. To assess the performance of AlignNemo, we ran a series of benchmarks using statistical measures as well as biological knowledge. Based on reference datasets of protein complexes, AlignNemo shows better performance than other methods in terms of both precision and recall. We show our solutions to be biologically sound using the concept of semantic similarity applied to Gene Ontology vocabularies. The binaries of AlignNemo and supplementary details about the algorithms and the experiments are available at: sourceforge.net/p/alignnemo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号