首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria: more than just a powerhouse   总被引:26,自引:0,他引:26  
Pioneering biochemical studies have long forged the concept that the mitochondria are the 'energy powerhouse of the cell'. These studies, combined with the unique evolutionary origin of the mitochondria, led the way to decades of research focusing on the organelle as an essential, yet independent, functional component of the cell. Recently, however, our conceptual view of this isolated organelle has been profoundly altered with the discovery that mitochondria function within an integrated reticulum that is continually remodeled by both fusion and fission events. The identification of a number of proteins that regulate these activities is beginning to provide mechanistic details of mitochondrial membrane remodeling. However, the broader question remains regarding the underlying purpose of mitochondrial dynamics and the translation of these morphological transitions into altered functional output. One hypothesis has been that mitochondrial respiration and metabolism may be spatially and temporally regulated by the architecture and positioning of the organelle. Recent evidence supports and expands this idea by demonstrating that mitochondria are an integral part of multiple cell signaling cascades. Interestingly, proteins such as GTPases, kinases and phosphatases are involved in bi-directional communication between the mitochondrial reticulum and the rest of the cell. These proteins link mitochondrial function and dynamics to the regulation of metabolism, cell-cycle control, development, antiviral responses and cell death. In this review we will highlight the emerging evidence that provides molecular definition to mitochondria as a central platform in the execution of diverse cellular events.  相似文献   

2.
Adenine nucleotides play a vital role in plant metabolism and physiology, essentially representing the major energy currency of the cell. Heterotrophic cells regenerate most of the ATP in mitochondria, whereas autotrophic cells also possess chloroplasts, representing a second powerhouse for ATP regeneration. Even though the synthesis of these nucleotides is restricted to a few locations, their use is nearly ubiquitous across the cell and thereby highly efficient systems are required to transport these molecules into and out of different compartments. Here, we discuss the location, biochemical characterization and evolution of corresponding transport systems in plants. We include recent scientific findings concerning organellar transporters from plants and algae and also focus on the physiological importance of adenine nucleotide exchange in these cells.  相似文献   

3.
Mixed lineage kinase domain-like protein (MLKL) emerged as executioner of necroptosis, a RIPK3-dependent form of regulated necrosis. Cell death evasion is one of the hallmarks of cancer. Besides apoptosis, some cancers suppress necroptosis-associated mechanisms by for example epigenetic silencing of RIPK3 expression. Conversely, necroptosis-elicited inflammation by cancer cells can fuel tumor growth. Recently, necroptosis-independent functions of MLKL were unraveled in receptor internalization, ligand-receptor degradation, endosomal trafficking, extracellular vesicle formation, autophagy, nuclear functions, axon repair, neutrophil extracellular trap (NET) formation, and inflammasome regulation. Little is known about the precise role of MLKL in cancer and whether some of these functions are involved in cancer development and metastasis. Here, we discuss current knowledge and controversies on MLKL, its structure, necroptosis-independent functions, expression, mutations, and its potential role as a pro- or anti-cancerous factor. Analysis of MLKL expression patterns reveals that MLKL is upregulated by type I/II interferon, conditions of inflammation, and tissue injury. Overall, MLKL may affect cancer development and metastasis through necroptosis-dependent and -independent functions.Subject terms: Cancer genomics, Prognostic markers  相似文献   

4.
Mutations in DNA replication initiator genes in both prokaryotes and eukaryotes lead to a pleiotropic array of phenotypes, including defects in chromosome segregation, cytokinesis, cell cycle regulation and gene expression. For years, it was not clear whether these diverse effects were indirect consequences of perturbed DNA replication, or whether they indicated that DNA replication initiator proteins had roles beyond their activity in initiating DNA synthesis. Recent work from a range of organisms has demonstrated that DNA replication initiator proteins play direct roles in many cellular processes, often functioning to coordinate the initiation of DNA replication with essential cell-cycle activities. The aim of this review is to highlight these new findings, focusing on the pathways and mechanisms utilized by DNA replication initiator proteins to carry out a diverse array of cellular functions.  相似文献   

5.
6.
正Genomes have been studied by biologists for decades with a goal to decipher the origin,evolution,and nature of life on earth.These studies often rely on genetic manipulations such as deletions and insertions(a top-down approach),but recent advances in DNA synthesis provide a new option—whole genome synthesis(a bottom-up approach).While several bacterial and viral genomes have been successfully  相似文献   

7.
First nuclear DNA amounts in more than 300 angiosperms   总被引:4,自引:0,他引:4  
BACKGROUND AND AIMS: Genome size (DNA C-value) data are key biodiversity characters of fundamental significance used in a wide variety of biological fields. Since 1976, Bennett and colleagues have made scattered published and unpublished genome size data more widely accessible by assembling them into user-friendly compilations. Initially these were published as hard copy lists, but since 1997 they have also been made available electronically (see the Plant DNA C-values database http://www.kew.org/cval/homepage.html). Nevertheless, at the Second Plant Genome Size Meeting in 2003, Bennett noted that as many as 1000 DNA C-value estimates were still unpublished and hence unavailable. Scientists were strongly encouraged to communicate such unpublished data. The present work combines the databasing experience of the Kew-based authors with the unpublished C-values produced by Zonneveld to make a large body of valuable genome size data available to the scientific community. METHODS: C-values for angiosperm species, selected primarily for their horticultural interest, were estimated by flow cytometry using the fluorochrome propidium iodide. The data were compiled into a table whose form is similar to previously published lists of DNA amounts by Bennett and colleagues. KEY RESULTS AND CONCLUSIONS: The present work contains C-values for 411 taxa including first values for 308 species not listed previously by Bennett and colleagues. Based on a recent estimate of the global published output of angiosperm DNA C-value data (i.e. 200 first C-value estimates per annum) the present work equals 1.5 years of average global published output; and constitutes over 12 % of the latest 5-year global target set by the Second Plant Genome Size Workshop (see http://www.kew.org/cval/workshopreport.html). Hopefully, the present example will encourage others to unveil further valuable data which otherwise may lie forever unpublished and unavailable for comparative analyses.  相似文献   

8.
Mitochondria are cytoplasmic organelles containing their own multi-copy genome. They are organized in a highly dynamic network, resulting from balance between fission and fusion, which maintains homeostasis of mitochondrial mass through mitochondrial biogenesis and mitophagy. Mitochondrial DNA (mtDNA) mutates much faster than nuclear DNA. In particular, mtDNA point mutations and deletions may occur somatically and accumulate with aging, coexisting with the wild type, a condition known as heteroplasmy. Under specific circumstances, clonal expansion of mutant mtDNA may occur within single cells, causing a wide range of severe human diseases when mutant overcomes wild type. Furthermore, mtDNA deletions accumulate and clonally expand as a consequence of deleterious mutations in nuclear genes involved in mtDNA replication and maintenance, as well as in mitochondrial fusion genes (mitofusin-2 and OPA1), possibly implicating mtDNA nucleoids segregation. We here discuss how the intricacies of mitochondrial homeostasis impinge on the intracellular propagation of mutant mtDNA.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   

9.
Summary The cytological distribution and the frequency of mitochondria in certain nuclei of the cat's brain stem was compared with the histochemical reactions for succinic dehydrogenase and cytochrome oxidase, which are known to be mitochondrial enzymes. The distribution of mitochondria was found to be identical with that of the above oxidative enzymes. The significance of these findings for the understanding of the regional chemistry and metabolism of the brain is indicated.With 5 Figures in the Text  相似文献   

10.
Rates of formation of RNA:DNA hybrids have been measured as a function of temperature and compared to DNA:RNA duplex denaturation temperatures in 4 M sodium perchlorate, 4 M NaClO4-6 M urea, and 3 M rubidium trichloracetate solvents. The usual bell shaped curves of reaction rate versus temperature were observed. The optimal temperatures for the RNA:DNA association reaction are 5 degrees to 12 degrees greater than the Tm's for DNA:DNA denaturation in these solvents, just as in formamide. R-loops of phi80d3ilv DNA with E. coli rRNA can be formed at high efficiency in these solvents.  相似文献   

11.
12.
Ting NS  Lee WH 《DNA Repair》2004,3(8-9):935-944
Breast carcinoma is the leading cause of cancer incidence, and second in cancer mortality to lung cancer, in women of the Western hemisphere. Germ line mutations in the breast cancer susceptibility gene, BRCA1, is responsible for half of all cases of hereditary breast cancer, which constitutes about 5-10% of all cases of breast cancer. Current hypothesis has ascribed a role for Brca1 in maintaining genomic stability, through its involvement in cellular response pathway to the DNA double-strand breaks (DSB). DNA DSB, which are the most deleterious form of DNA damage, are repaired through a series of coordinated steps embedded in a signal transduction pathway that ultimately ensure the elimination of potentially harmful mutations to the genome. This pathway can be crudely divided into a primary and secondary phase. The primary response phase is initiated by sensor proteins that activate transducer protein kinases Atm and Atr, which target downstream effector proteins, such as Chk1 and Chk2, to elicit the secondary response phase. Brca1 has been intimately linked with various aspects of this signaling pathway. However, the precise role of Brca1 in this process remains unclear. In this review, we will provide a simple model in an attempt to clarify the role of Brca1 during cellular response to DNA DSB.  相似文献   

13.
In his recent interview for the Guardian Craig Venter is elaborating about a household appliance for the future, Digital Biological Converter(DBC). Current prototype, which can produce DNA, is a box attached to the computer which receives DNA sequences over the internet to synthesize DNA; later in future also viruses, proteins, and living cells. This would help the household members to produce, e.g., insulin, virus vaccines or phages that fight antibiotic resistant bacteria. In more distant future, Craig Venter's hope is that the DBC will generate living cells via so-called "Universal Recipient Cell". This platform will allow digitally transformed genomes, downloaded from the internet, to form new cells fitted for the particular needs such as therapeutics, food, fuel or cleaning water. In contrast to this, the authors propose that DNA sequences of genomes do not represent 1:1 depictions of unequivocal coding structures such as genes. In light of the variety of epigenetic markings, DNA can store a multitude of further meanings hidden under the superficial grammar of nucleic acid sequences.  相似文献   

14.
Decades of investigation on DNA methylation have led to deeper insights into its metabolic mechanisms and biological functions.This understanding was fueled by the recent development of genome editing tools and our improved capacity for analyzing the global DNA methylome in mammalian cells.This review focuses on the maintenance of DNA methylation patterns during mitotic cell division.We discuss the latest discoveries of the mechanisms for the inheritance of DNA methylation as a stable epigenetic memory.We also highlight recent evidence showing the rapid turnover of DNA methylation as a dynamic gene regulatory mechanism.A body of work has shown that altered DNA methylomes are common features in aging and disease.We discuss the potential links between methylation maintenance mechanisms and diseaseassociated methylation changes.  相似文献   

15.
S Lin  D Lin    A D Riggs 《Nucleic acids research》1976,3(9):2183-2191
Using a membrane filter assay, we have obtained results from both kinetic and competition experiments indicating that histones bind more strongly to bromodeoxyuridine-substituted DNA than to normal DNA. At 37 degrees C in our standard buffer of 0.2 M ionic strength, the rate of dissociation of histones H1, H2, and h4 from BrdU-substituted DNA is respectively 7, 4, and 2 times slower than it is from normal DNA. Competition experiments show an even greater difference between BrdU-substituted and normal DNA with respect to histone binding. The tighter binding of histones to BrdU-substituted DNA is of interest because of the known effects of BrdU on eukaryotic chromosome condensation and staining, virus induction, and the inhibition of differentiation.  相似文献   

16.
Mitochondria are 'life-essential' organelles for the production of metabolic energy in the form of ATP. Paradoxically mitochondria also play a key role in controlling the pathways that lead to cell death. This latter role of mitochondria is more than just a 'loss of function' resulting in an energy deficit but is an active process involving different mitochondrial proteins. Cytochrome c was the first characterised mitochondrial factor shown to be released from the mitochondrial intermembrane space and to be actively implicated in apoptotic cell death. Since then, other mitochondrial proteins, such as AIF, Smac/DIABLO, endonuclease G and Omi/HtrA2, were found to undergo release during apoptosis and have been implicated in various aspects of the cell death process. Members of the Bcl-2 protein family control the integrity and response of mitochondria to apoptotic signals. The molecular mechanism by which mitochondrial intermembrane space proteins are released and the regulation of mitochondrial homeostasis by Bcl-2 proteins is still elusive. This review summarises and evaluates the current knowledge concerning the complex role of released mitochondrial proteins in the apoptotic process.  相似文献   

17.
The protein Numb does not live up to its name. This passive-sounding protein is anything but spent. Originally identified as a cell-fate determinant in Drosophila development, Numb received a good deal of attention as an inhibitor of the Notch receptor signaling pathway. It turns out, however, that Numb does a lot more than simply regulate Notch. It has been implicated in a variety of biochemical pathways connected with signaling (it regulates Notch-, Hedgehog- and TP53-activated pathways), endocytosis (it is involved in cargo internalization and recycling), determination of polarity (it interacts with the PAR complex, and regulates adherens and tight junctions), and ubiquitination (it exploits this mechanism to regulate protein function and stability). This complex biochemical network lies at the heart of Numb's involvement in diverse cellular phenotypes, including cell fate developmental decisions, maintenance of stem cell compartments, regulation of cell polarity and adhesion, and migration. Considering its multifaceted role in cellular homeostasis, it is not surprising that Numb has been implicated in cancer as a tumor suppressor. Our major goal here is to explain the cancer-related role of Numb based on our understanding of its role in cell physiology. We will attempt to do this by reviewing the present knowledge of Numb at the biochemical and functional level, and by integrating its apparently heterogeneous functions into a unifying scenario, based on our recently proposed concept of the "endocytic matrix". Finally, we will discuss the role of Numb in the maintenance of the normal stem cell compartment, as a starting point to interpret the tumor suppressor function of Numb in the context of the cancer stem cell hypothesis.  相似文献   

18.
Genome instability is regarded as a hallmark of cancer. Human tumors frequently carry clonally expanded mutations in their mitochondrial DNA (mtDNA), some of which may drive cancer progression and metastasis. The high prevalence of clonal mutations in tumor mtDNA has commonly led to the assumption that the mitochondrial genome in cancer is genetically unstable, yet this hypothesis has not been experimentally tested. In this study, we directly measured the frequency of non-clonal (random) de novo single base substitutions in the mtDNA of human colorectal cancers. Remarkably, tumor tissue exhibited a decreased prevalence of these mutations relative to adjacent non-tumor tissue. The difference in mutation burden was attributable to a reduction in C:G to T:A transitions, which are associated with oxidative damage. We demonstrate that the lower random mutation frequency in tumor tissue was also coupled with a shift in glucose metabolism from oxidative phosphorylation to anaerobic glycolysis, as compared to non-neoplastic colon. Together these findings raise the intriguing possibility that fidelity of mitochondrial genome is, in fact, increased in cancer as a result of a decrease in reactive oxygen species-mediated mtDNA damage.  相似文献   

19.
Psoriasis: more than skin deep   总被引:3,自引:0,他引:3  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号