首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Two separate, highly purified ferulic acid esterases from a fungal and bacterial source are both capable of releasing -glucan and pentosans from the cell walls of the starchy endosperm of barley. This suggests that ester linkages involving ferulic acid contribute to the integrity of such walls.  相似文献   

2.
Localisation of -amylase (EC 3.2.1.1.) in low-temperature-embedded isolated barley (Hordeum vulgare L.) aleurone has been achieved using rhodamine-labelled secondary antibodies and the protein A-gold technique. Treatment with gibberellic acid (GA3) resulted in an increase of immunofluorescence in the cytoplasm of aleurone cells and also its appearance in specific regions of the cell walls. Cytoplasmic label was neither perinuclear nor associated specifically with aleurone grains as had been found in earlier work, but was present throughout the cytoplasm of all cells. A relatively high level of labelling occurred in hydrolysed wall regions. Label was also associated with plasmodesmata in both hydrolysed and unhydrolysed wall regions. The pattern of labelling indicates that -amylase is released from aleurone via digested wall channels and that, except for the inner wall layer, unhydrolysed regions are impermeable to the enzyme. It is suggested that the resistant wall tubes around plasmodesmata may facilitate enzyme release by providing a pathway for transfer, especially of wall hydrolases, into the more impermeable parts of the wall.Abbreviations ER endoplasmic reticulum - GA3 gibberellic acid - RER rough endoplasmic reticulum  相似文献   

3.
R. D. Firn 《Planta》1975,125(3):227-233
Summary Gel filtration and centrifugation studies were used to study the distribution of -amylase activity in homogenates of barley (Hordeum vulgare L.) aleurone layers. The results obtained were consistent with the hypothesis that -amylase is secreted via membrane-bound vesicles. The -amylase activity in an homogenate of barley aleurone layers was derived not only from the enzyme retained in the aleurone cells but also from enzyme previously secreted from the cells but apparently retained by the cell walls. The amount of -amylase retained by the cell wall was influenced by factors such as the buffer in which the layers were incubated or the presence of Actinomycin D in the incubation medium.Abbreviations GA3 gibberellic acid - RER rough endoplasmic reticulum - Act. D Actinomycin D  相似文献   

4.
Summary The treatment of barley aleurone layers with gibberellic acid (GA3) results in the synthesis of two groups of -amylase isozymes. Addition of abscisic acid (ABA) at the same time as GA3 inhibited the synthesis of both groups of isozymes. However, midcourse ABA addition (12 h or later after GA3) had a more inhibitory effect on the high pI -amylase group than on the low pI -amylase group. This midcourse inhibition was detectable within 2 h of ABA addition. Northern analysis results using cDNA probes for the high pI and low pI -amylase groups paralleled the protein synthesis results for both isozyme groups. High pI -amylase mRNA levels began to decrease within 2 h of midcourse ABA treatment and were less than 10% of the original level by 4 h. The levels of low pI -amylase mRNA were decreased less by midcourse ABA addition than were high pI mRNA levels. Cordycepin and cycloheximide blocked the effects of midcourse ABA addition on -amylase mRNA. These observations indicate that ABA inhibits -amylase expression at the pretranslational level and that protein and RNA synthesis are required for midcourse ABA action to occur. Our results also show that -amylase mRNA, which has been thought to be very stable, is degraded after midcourse ABA treatment.  相似文献   

5.
The effect of calcium on the secretion of α-amylase (EC 3.2.1.1) and other hydrolases from aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) was studied. Withdrawal of Ca2+ from the incubation medium of aleurone layers preincubated in 5 μM gibberellic acid (GA3) and 5 mM CaCl2 results in a 70–80% reduction in the secretion of α-amylase activity to the incubation medium. Agar-gel electrophoresis shows that the reduction in α-amylase activity following Ca2+ withdrawal is correlated with the disappearance of group B isoenzymes from the incubation medium. The secretion of isoenzymes of group A is unaffected by Ca2+. The addition of Ca2+ stimulates the secretion of group-B isoenzymes but has no measurable effect on either the α-amylase activity or the isoenzyme pattern of aleurone-layer extracts. Pulse-labelling experiments with [35S]methionine show that Ca2+ withdrawal results in a reduction in the secretion of labelled polypeptides into the incubation medium. Immunochemical studies also show that, in the absence of Ca2+, α-amylase isoenzymes of group B are not secreted into the incubation medium. In addition to its effect on α-amylase, Ca2+ influences the secretion of other proteins including several acid hydrolases. The secretion of these other proteins shows the same dependence on Ca2+ concentration as does that of α-amylase. Other cations can promote the secretion of α-amylase to less and varying extents. Strontium is 85% as effective as Ca2+ while Ba2+ is only 10% as effective. We conclude that Ca2+ regulates the secretion of enzymes and other proteins from the aleurone layer of barley.  相似文献   

6.
《Phytochemistry》1996,43(1):29-37
The lutoid-body (bottom) fraction of latex from the rubber tree (Hevea brasiliensis) contains a limited number of major proteins. These are, besides the chitin-binding protein hevein, its precursor and the C-terminal fragment of this precursor, proteins with enzymic activities: three hevamine components, which are basic, vacuolar, chitinases with lysozyme activity, and a β-1,3-glucanase. Lutoid-body fractions from three rubber-tree clones differed in their contents of these enzyme proteins. The hevamine components and glucanase were isolated and several enzymic and structural properties were investigated. These enzymes are basic proteins and cause coagulation of the negatively charged rubber particles. The coagulation occurs in a rather narrow range of ratios of added protein to rubber particles, which indicates that charge neutralization is the determining factor. Differences in coagulation of rubber particles by lutoid-body fractions from various rubber clones can be explained by their content of hevamine and glucanase. Glucanase from the lutoid-body fraction may dissolve callus tissue and this may explain the observation that rubber-tree clones with a high glucanase content in this fraction produce more latex than clones with little glucanase. Sequence studies of two CNBr peptides of the glucanase indicate that this protein is homologous with glucanases from other plants, and that a C-terminal peptide, possibly involved in vacuolar targeting, may have been cleaved off.  相似文献   

7.
Trichoderma species have become the important means of biological control for fungal diseases. This research was carried on to access the high β-1,3-glucanase and β-1,4-glucanase enzyme producer of Trichoderma species isolates using two different carbon sources for finding a method to obtain more concentrate culture filtrates. Therefore, 14 Trichoderma isolates belonging to species: Trichoderma ceramicum, T. virens, T. pseudokoningii, T. koningii, T. koningiosis, T. atroviridae, T. viridescens, T. asperellum, T. harzianum1, T. orientalis, T. harzianum2, T. brevicompactum, T. viride and T. spirale were cultured in Wiendling’s liquid medium plus 0.5% glycerol or 0.5% Phytophthora sojae-hyphe as the carbon source in shaking and non-shaking (stagnant) statuses. Enzyme activity rate and total protein were evaluated in raw, acetony and lyophilized concentrated culture filtrates and the specific enzyme activity of β-1,3-glucanase and β-1,4-glucanase were measured by milligramme glucose equivalent released per minute per milligramme total protein in culture filtrates. The results showed that using Phytophthora – hyphe in medium increased the enzyme activities as compared to glycerol at all Trichoderma species which suggested that these substrates can also act as inducer for synthesis of lytic enzymes, in addition the most enzymes activity was observed in the lyophilised concentrated culture filtrate. The most successful species in β-1,3-glucanase and β-1,4-glucanase enzymes activities were T. brevicompactum and T. virens and these species can be used for mass production of these enzymes which are supposed to be used in commercial formulation and also will be able to control P. sojae directly.  相似文献   

8.
The subcellular site of -amylase (EC 1.6.2.1) synthesis and transport was studied in barley aleurone layers incubated in the presence or absence of gibberellic acid (GA3). Using [35S]methionine as a marker, the site of amino-acid incorporation into organelles isolated from aleurone layers incubated with and without GA3 was determined following purification by isopycnic sucrose-density-gradient centrifugation. Incorporation of radioactivity into trichloroacetic-acid-insoluble proteins was greatest in those fractions exhibiting activity of an endoplasmic reticulum (ER) marker enzyme. Further fractionation of densitygradient fractions by sodium-dodecyl-sulfate polyacrylamide-gel electrophoresis showed that a major portion of the radioactivity in the ER fractions was present in a protein co-migrating with marker -amylase. This protein was identified as authentic -amylase by immunoadsorbent chromatography and affinity chromatography. The newly synthesized -amylase associated with the ER was shown to be sequenstered within the lumen of the ER by experiments which showed that the enzyme was resistant to proteolytic degradation. The labelled -amylase sequestered in the ER can be chased from this organelle when tissue is incubated in unlabelled methionine following a 1-h pulse of labelled methionine. The isoenzymic forms of -amylase found in tissue homogenates and incubation media of aleurone layers incubated with and without GA3 were characterized after chromatography on diethylaminoethyl cellulose. In homogenates of GA3-treated aleurone layers, five peaks of -amylase activity were detected, while in homogenates of aleurone layers incubated with-out GA3 only three peaks of activity were found. In incubation media, four isoenzymes were found after GA3 treatment and two were found after incubation without GA3. We conclude that at least five -amylase isoenzymes are synthesized by the ER of barley aleurone layers and that this membrane system is involved in the sequestration and transport of four of these isoenzymes.Abbreviations CHA cyclohepataamylose - DEAE-cellulose diethylaminoethyl-cellulose - ER endoplasmic reticulum - GA3 gibberellic acid - SDS-PAGE sodium-dodecyl-sulfate polyacrylamide-gel electrophoresis  相似文献   

9.
Robert Locy  Hans Kende 《Planta》1978,143(1):89-99
The involvement of the endomenbrane system of barley (Hordeum vulgare L.) aleurone cells in the secretion of gibberellin-induced hydrolases has been investigated at the biochemical level. Our results show that at least 40–60% of the -amylase activity in homogenates of aleurone layers occurs in a membrane-bound, latent form. The latent -amylase can be assayed quantitatively following disruption of membranes by treatment with Triton X-100, ethanol, sonication, or osmotic shock and shear. The association of -amylase with the membrane is not an artifact arising from homogenization of the tissue, and acid protease is also enriched in the same subcellular fraction as the -amylase. The membrane fraction with which the -amylase is associated has many properties of the endoplasmic reticulum (ER). When membranebound -amylase is prepared in buffers containing 3 mM MgCl2 two fractions from a sucrose step gradient contain most of the -amylase activity. These fractions are enriched in the ER marker enzyme, NADH-dependent cytochrome-c reductase, and show densities characteristic of smooth and rough ER during subsequent purification on continuous gradients. In step gradients prepared with ethylenediaminete-traacetic-acid-treated membranes, -amylase activity is contained primarily in one fraction having the density of smooth ER. Electron microscopy of the purified fractions is consistent with -amylase being associated with smooth and rough ER. However, it has not been ruled out that the enzyme is also associated with plasma membrane, Golgi membranes, or tonoplast. Examination of the isoenzyme patterns of secreted, of total-homogenate and of membrane-associated -amylases, as well as the results from pulsechase experiments using L-[3H]leucine for labeling of -amylase, are all consistent with the hypothesis that membrane-associated -amylase is an intermediate in the secretory process.Abbreviations CNTPE N-carbobenzoxy-L-tyrosine p-nitrophenylester - Cyt oxidase Cytochrome oxidase - ER endoplasmic reticulum - EDTA ethylenediaminetetraacetic acid - GA3 gibberellic acid - IDPase inosine diphosphatase - K+-ATPase pH 6.5 K+-stimulated adenosine triphosphatase - MES 2-(N-morpholino)ethanesulfonic acid - MOPS 3-(N-morpholino)propanesulfonic acid - NADH: Cyt c reductase cyanide-insensitive NADH-linked cytochrome-c reductase - RER rough endoplasmic reticulum - Tris tris-(hydroxymethyl)-aminomethane  相似文献   

10.
11.
The major β-1,3-glucanase from Tenebrio molitor (TLam) was purified to homogeneity (yield, 6%; enrichment, 113 fold; specific activity, 4.4 U/mg). TLam has a molecular weight of 50 kDa and a pH optimum of 6. It is an endoglucanase that hydrolyzes β-1,3-glucans as laminarin and yeast β-1,3-1,6-glucan, but is inactive toward other polysaccharides (as unbranched β-1,3-glucans or mixed β-1,3-1,4-glucan from cereals) or disaccharides. The enzyme is not inhibited by high substrate concentrations and has low processivity (0.6). TLam has two ionizable groups involved in catalysis, and His, Tyr and Arg residues plus a divalent ion at the active site. A Cys residue important for TLam activity is exposed after laminarin binding. The cDNA coding for this enzyme was cloned and sequenced. It belongs to glycoside hydrolase family 16, and is related to other insect glucanases and glucan-binding proteins. Sequence analysis and homology modeling allowed the identification of some residues (E174, E179, H204, Y304, R127 and R181) at the active site of the enzyme, which may be important for TLam activity. TLam efficiently lyses fungal cells, suggesting a role in making available walls and cell contents to digestion and in protecting the midgut from pathogen infections.  相似文献   

12.
13.
G. Felix  F. Meins Jr. 《Planta》1986,167(2):206-211
A highly sensitive and specific rocket immunoassay was used to measure the content of an endo-type -1,3-glucanase (EC 3.2.1.39) in tissues of Nicotiana tabacum L. cv. Havana 425. We show that the accumulation of -1,3-glucanase in cultured pith-parenchyma tissue is blocked by combinations of the auxin, -naphthaleneacetic acid (NAA), and the cytokinin, kinetin. When tissues pre-incubated for 7 d on complete medium containing 2.0 mg·l-1 NAA and 0.3 mg·l-1 kinetin are transferred onto medium without hormones or with either hormone added separately, the -1,3-glucanase content expressed per mg soluble protein increases approx. ten fold over a 7-d period. Under these inductive conditions, up to approx. 5% of the soluble protein is -1,3-glucanase. The induction is inhibited by >90% when tissues are cultured over the same period on medium containing both hormones. This -1,3-glucanase is developmentally regulated in the intact plant. It is a major component of the soluble protien in the lower leaves and roots but is not detectable in leaves near the top of the plant.Abbreviation NAA -naphthaleneacetic acid  相似文献   

14.
Beta-1,3-glucanase is one of the pathogenesis-related (PR) proteins involved in plant defense responses. A peach beta-1,3-glucanase gene, designated PpGns1, has been isolated and characterized. The deduced amino acid sequence of the product of PpGns indicates that it is a basic isoform (pI 9.8), and contains a putative signal peptide of 38 amino acids but has no C-terminal extension. Amino acid sequence comparisons revealed that PpGns1 is 69% and 67% identical to citrus and soybean beta-1,3-glucanases, respectively. Southern analysis of total genomic DNA also indicates that at least three genes for beta-1,3-glucanases exist in peach, forming a small gene family. Characterization of four additional clones by PCR has identified a second beta-1,3-glucanase gene, PpGns2. PpGns2 has been partially sequenced, and when compared to PpGns1, it shows high sequence homology, 96% and 99% nucleotide identity in the first and (partial) second exons, respectively. The deduced partial sequence of the PpGns2 product displays only two differences from PpGns1 in the signal peptide and one in the (partial) mature protein (141 amino acids). The 5'-flanking promoter regions of these two genes share 90% identity in nucleotide sequences interrupted by five major gaps (4-109 nt long). The promoter region contains various sequences similar to cis-regulatory elements present in different stress-induced plant genes. In leaves and stems of peach shoot cultures grown in vitro, PpGns1 is induced within 12 h after exposure to a culture filtrate of Xanthomonas campestris pv. pruni or ethephon. However, it is not induced following treatment with mercuric chloride.  相似文献   

15.
A barley acidic -1,3-glucanase gene was recovered from a barley genomic library by homology with a partial cDNA of barley basic -1,3-glucanase isoenzyme GII. The gene, Abg2, is homologous to the PR2 family of pathogenesis-related -1,3-glucanase genes. The ABG2 protein has 81% amino acid similarity to barley basic -1,3-glucanase GII. The ABG2 protein is encoded as a preprotein of 336 amino acids including a 28 amino acid signal peptide. A 299 bp intron occurs within codon 25. The mature ABG2 protein has a predicted mass of 32642 Da and a calculated isoelectric point of 4.9. The second exon of the Abg2 gene shows a strong preference for G+C in the third position of degenerate codons. The Abg2 gene was functionally expressed in Escherichia coli. Abg2 mRNA is constitutively expressed in barley root; leaf expression of Abg2 mRNA is induced by mercuric chloride and infection by Erysiphe graminis f. sp. hordei. Southern blot analysis indicates that Abg2 is a member of a small gene family.  相似文献   

16.
Young plants of wheat (Triticum aestivum L. cv. Star), which were treated hydroponically with the triazole fungicide epoxiconazole (BAS 480 F) over a period of 8 days, showed a dose-dependent stimulation of the enzyme activities of the two antifungal hydrolases chitinase and -1,3-glucanase in the shoot tissue. In the root tissue, no significant rise in the enzyme activities was found. As shown by immunoblot analysis and enzyme-linked immunosorbent assay (ELISA) using antisera against tobacco acidic and basic chitinases and -1,3-glucanases, the obeserved increase in the activities coincided with an accumulation of enzyme proteins. This possibly indicates the induction of a de novo synthesis of chitinases and -1,3-glucanases by epoxiconazole. To our knowledge, this effect of a synthetic fungicide on antifungal hydrolases in an intact plant is demonstrated for the first time.  相似文献   

17.
The class I -1,3-glucanases are antifungal vacuolar proteins implicated in plant defense that show developmental, hormonal, and pathogenesis-related regulation. The tobacco enzymes are encoded by a small gene family with members derived from ancestors related to the present-day species Nicotiana sylvestris and N. tomentosiformis. We studied the expression in transgenic tobacco plants of a chimeric -glucuronidase (GUS) reporter gene fused to 1.6 kb of upstream sequence of the tobacco class I -1,3-glucanase B (GLB) gene, which is of N. tomentosiformis origin. Expression of the GUS reporter gene and the accumulation of class I -1,3-glucanase and its mRNA showed very similar patterns of regulation. In young seedlings the reporter gene was expressed in the roots. In mature tobacco plants it was preferentially expressed in lower leaves and roots and was induced in leaves by ethylene treatment and by infection with tobacco mosaic virus (TMV). Furthermore, it was down-regulated in cultured leaf discs by combinations of the hormones auxin and cytokinin. Histological studies of GUS activity showed that the GLB promoter shows highly localized expression in roots of seedlings. It is also expressed in a ring of cells around necrotic lesions induced by TMV infection, but not in cells immediately adjacent to the lesions or in the lesions themselves. The results of deletion analyses suggest that multiple positive and negative elements in the GLB promoter regulate its activity. The region from –1452 to –1193 containing two copies of the heptanucleotide AGCCGCC, which is highly conserved in plant-stress and defense-related genes, is necessary for high level expression in leaves. Additional regions important for organ-specific and regulated expression were: –568 to –402 for ethylene induction of leaves; –402 to –211 for expression in lower leaves and cultured leaf discs and for TMV induction of leaves; and –211 to –60 for expression in roots.  相似文献   

18.
1. A cell-free system capable of alpha-amylase synthesis has been obtained from the aleurone layers of germinating barley. 2. This system requires potassium chloride, sucrose and an amino acid mixture in order to function. The crude preparation does not require calcium chloride. Chloramphenicol inhibits alpha-amylase synthesis as indicated both by increase in measurable enzyme activity and incorporation of l-[U-(14)C]glutamic acid.  相似文献   

19.
Studies on the constitutive β-1,3-glucanase were conducted in submerged as well as in the stationary culture conditions, in the presence and in the absence of lactose and glucose as main carbon sources. In the absence of lactose or glucose, expression of β-1,3-glucanase was observed at 96?h in extracellular, periplasmic, cell wall bound and internal fractions during submerged fermentation. In shake flask culture, enzyme was found in all subcellular fractions using optimal glucose concentration. When Trichoderma harzianum was grown on media containing 55?kg lactose/m3 in submerged culture, activity was found in extracellular, cell wall bound and in the periplasmic fractions. The relative distribution of the enzyme in the cell is independent of the nature of the carbon source and its concentration.  相似文献   

20.
α-Amylases secreted by the aleurone layer of whole barley grains were relatively rich in histidine and relatively poor in glutamate/glutamine and serine when compared to other eukaryotic proteins. The secreted α-amylases had an estimated 0.5 residues each of glucose, mannose and N-acetylglucosamine per molecule of protein (MW 41 400 daltons), and gave positive staining reactions for carbohydrate on sodium dodecylsulfate polyacrylamide gels. Because the average α-amylase molecule had less than one sugar residue per enzyme molecule, it was concluded that secreted α-amylases were heterogeneous with respect to glycosylation. A second protein co-purified with α-amylase, but the amino acid composition of this protein was different from that of barley or wheat α-amylase. This protein was composed of two 21 500 dalton polypeptides. No significant amounts of L-leucine (14C-U) were incorporated into this second protein in isolated aleurone tissue during incubation with gibberellic acid, perhaps because much of it was already present in the starchy endosperm at the time of hormone addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号