首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germline mutations at the Dominant White Spotting (W) and Steel (Sl) loci have provided conclusive genetic evidence that c-kit mediated signal transduction pathways are essential for normal mouse development. We have analysed the interactions of normal and mutant W/c-kit gene products with cytoplasmic signalling proteins, using transient c-kit expression assays in COS cells. In addition to the previously identified c-kit gene product (Kit+), a second normal Kit isoform (KitA+) containing an in-frame insertion, Gly-Asn-Asn-Lys, within the extracellular domain, was detected in murine mast cell cultures and mid-gestation placenta. Both Kit+ and KitA+ isoforms showed increased autophosphorylation and enhanced association with phosphatidylinositol (PI) 3' kinase and PLC gamma 1, when stimulated with recombinant soluble Steel factor. No association or increase in phosphorylation of GAP and two GAP-associated proteins, p62 and p190, was observed. The two isoforms had distinct activities in the absence of exogenous soluble Steel factor; Kit+, but not KitA+, showed constitutive tyrosine phosphorylation that was accompanied by a low constitutive level of association with PI-3' kinase and PLC gamma 1. Introduction of the point substitutions associated with W37 (Glu582----Lys) or W41 (Val831----Met) mutant alleles into c-kit expression constructs abolished (W37) or reduced (W41) the Steel factor-induced association of the Kit receptor with signalling proteins in a manner proportional to the overall severity of the corresponding W mutant phenotype. These data suggest a diversity of normal Kit signalling pathways and indicate that W mutant phenotypes result from primary defects in the Kit receptor that affect its interaction with cytoplasmic signalling proteins.  相似文献   

2.
W S Alexander  S D Lyman    E F Wagner 《The EMBO journal》1991,10(12):3683-3691
Loss-of-function mutations in the gene for the c-kit tyrosine kinase receptor are strongly implicated in the developmental abnormalities of W mutant mice. To dissect further the relationship between kit and the W phenotype, retroviruses carrying the normal murine c-kit gene were constructed. In infected cells, the level of c-kit expression from these vectors varied markedly with different promoter elements, the 5' viral LTR proving to be the most effective. When introduced into cells which normally do not express c-kit, ectopic kit receptors transduced a ligand (Steel factor)-dependent proliferative signal in IL-3-dependent DA-1 myeloid cells and induced transformation in fibroblasts. Primary mutant mast cells were used to examine the effects of reconstituting functional kit expression in cells affected by W mutations. Exogenous c-kit expression rescued the defective proliferative response to Steel factor of cells from both W/Wv and W/W mutant mice. Moreover, functional kit expression also restored the capacity of W/Wv mast cells to survive and differentiate in vivo. These results imply that defective c-kit receptor function is sufficient to generate the W mutant phenotype.  相似文献   

3.
I Timokhina  H Kissel  G Stella    P Besmer 《The EMBO journal》1998,17(21):6250-6262
The receptor tyrosine kinase Kit plays critical roles in hematopoiesis, gametogenesis and melanogenesis. In mast cells, Kit receptor activation mediates several cellular responses including cell proliferation and suppression of apoptosis induced by growth factor deprivation and gamma-irradiation. Kit receptor functions are mediated by kinase activation, receptor autophosphorylation and association with various signaling molecules. We have investigated the role of phosphatidylinositol 3'-kinase (PI 3-kinase) and Src kinases in Kit-mediated cell proliferation and suppression of apoptosis induced both by factor deprivation and irradiation in bone marrow-derived mast cells (BMMC). Analysis of Kit-/- BMMC expressing mutant Kit receptors and the use of pharmacological inhibitors revealed that both signaling pathways contribute to these Kit-mediated responses and that elimination of both pathways abolishes them. We demonstrate that the PI 3-kinase and Src kinase signaling pathways converge to activate Rac1 and JNK. Analysis of BMMC expressing wild-type and dominant-negative mutant forms of Rac1 and JNK revealed that the Rac1/JNK pathway is critical for Kit ligand (KL)-induced proliferation of mast cells but not for suppression of apoptosis. In addition, KL was shown to inhibit sustained activation of JNK induced by gamma-irradiation and concomitant irradiation-induced apoptosis.  相似文献   

4.
In bone marrow-derived mast cells (BMMCs), the Kit receptor tyrosine kinase mediates diverse responses including proliferation, survival, chemotaxis, migration, differentiation, and adhesion to extracellular matrix. In connective tissue mast cells, a role for Kit in the secretion of inflammatory mediators has been demonstrated as well. We recently demonstrated a role for phosphatidylinositide-3' (PI 3)-kinase in Kit-ligand (KL)-induced adhesion of BMMCs to fibronectin. Herein, we investigated the mechanism by which Kit mediates enhancement of Fc epsilon RI-mediated degranulation, cytoskeletal rearrangements, and adhesion in BMMCs. Wsh/Wsh BMMCs lacking endogenous Kit expression, were transduced to express normal and mutant Kit receptors containing Tyr-->Phe substitution at residues 719 and 821. Although the normal Kit receptor fully restored KL-induced responses in Wsh/Wsh BMMCs, Kit gamma 719F, which fails to bind and activate PI 3-kinase, failed to potentiate degranulation and is impaired in mediating membrane ruffling and actin assembly. Inhibition of PI 3-kinase with wortmannin or LY294002 also inhibited secretory enhancement and cytoskeletal rearrangements mediated by Kit. In contrast, secretory enhancement and adhesion stimulated directly through protein kinase C (PKC) do not require PI 3-kinase. Calphostin C, an inhibitor of PKC, blocked Kit-mediated adhesion to fibronectin, secretory enhancement, membrane ruffling, and filamentous actin assembly. Although cytochalasin D inhibited Kit-mediated filamentous actin assembly and membrane ruffling, secretory enhancement and adhesion to fibronectin were not affected by this drug. Therefore, Kit-mediated cytoskeletal rearrangements that are dependent on actin polymerization can be uncoupled from the Kit-mediated secretory and adhesive responses. Our results implicate receptor-proximal PI 3-kinase activation and activation of a PKC isoform in Kit-mediated secretory enhancement, adhesion, and cytoskeletal reorganization.  相似文献   

5.
The class I(A) phosphoinositide 3-kinases (PI3Ks) consist of a 110-kDa catalytic domain and a regulatory subunit encoded by the p85alpha, p85beta, or p55gamma genes. We have determined the effects of disrupting the p85alpha gene on the responses of mast cells stimulated by the cross-linking of Kit and FcepsilonRI, receptors that reflect innate and adaptive responses, respectively. The absence of p85alpha gene products partially inhibited Kit ligand/stem cell factor-induced secretory granule exocytosis, proliferation, and phosphorylation of the serine/threonine kinase Akt. In contrast, p85alpha gene products were not required for FcepsilonRI-initiated exocytosis and phosphorylation of Akt. LY294002, which inhibits all classes of PI3Ks, strongly suppressed Kit- and FcepsilonRI-induced responses in p85alpha -/- mast cells, revealing the contribution of another PI3K family member(s). In contrast to B lymphocytes, mast cell proliferation was not dependent on Bruton's tyrosine kinase, a downstream effector of PI3K, revealing a distinct pathway of PI3K-dependent proliferation in mast cells. Our findings represent the first example of receptor-specific usage of different PI3K family members in a single cell type. In addition, because Kit- but not FcepsilonRI-initiated signaling is associated with mast cell proliferation, the results provide evidence that distinct biologic functions signaled by these two receptors may reflect differential usage of PI3Ks.  相似文献   

6.
K Nocka  J Buck  E Levi    P Besmer 《The EMBO journal》1990,9(10):3287-3294
The c-kit proto-oncogene encodes a transmembrane tyrosine kinase receptor for an unidentified ligand and is allelic with the murine white-spotting locus (W). W mutations affect melanogenesis, gametogenesis and hematopoiesis during development and in adult life. Cellular targets of W mutations in hematopoiesis include distinct cell populations in the erythroid and mast cell lineages as well as stem cells. In the absence of interleukin-3 (IL-3) mast cells derived from normal mice but not from W mutant mice can be maintained by co-culture with 3T3 fibroblasts. Based on the defective proliferative response of W mast cells in the 3T3 fibroblast co-culture system it had been proposed that fibroblasts produce the c-kit ligand. We have used a mast cell proliferation assay to purify a 30 kd protein, designated KL, from conditioned medium of Balb/3T3 fibroblasts to apparent homogeneity. KL stimulates the proliferation of normal bone marrow derived mast cells but not mast cells from W mice, although both normal and mutant mast cells respond similarly to IL-3. Connective tissue-type mast cells derived from the peritoneal cavity of normal mice were found to express a high level of c-kit protein on their surface and to proliferate in response to KL. The effect of KL on erythroid progenitor cells was investigated as well. In combination with erythropoietin, KL was found to stimulate early erythroid progenitors (BFU-E) from fetal liver and spleen cells but not from bone marrow cells of adult mice and from fetal liver cells of W/W mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The characteristic progression and specificity of Friend virus for the erythroid lineage have allowed for the identification of a number of host-encoded loci that are required for disease progression. Several of these loci, including the Friend virus susceptibility gene 2 (Fv2), dominant white spotting gene (W), and Steel gene (Sl), regulate the initial polyclonal expansion of infected erythroid progenitor cells. W and Sl encode the Kit receptor tyrosine kinase and its ligand, stem cell factor, respectively. W mutant mice are severely anemic, and earlier work suggested that this defect in erythroid differentiation is the cause for the resistance to Friend virus-induced erythroleukemia. Here we show that in bone marrow, W/W(v) mice have near normal numbers of target cells and the initial infection of bone marrow occurs normally in vivo. In contrast, spleen cells from W/W(v) mice infected both in vitro and in vivo with Friend virus failed to give rise to erythropoietin-independent colonies at any time following Friend virus infection, suggesting that mutation of the Kit receptor specifically affects target cells in the spleen, rendering the mutant mice resistant to the development of Friend virus-induced erythroleukemia. In addition, we show that the Kit+ pathogenic targets of Friend virus in the spleen are distinct from the pathogenic targets in bone marrow and this population of spleen target cells is markedly decreased in W/W(v) mice and these cells fail to express Sf-Stk. These results also underscore the unique nature of the spleen microenvironment in its role in supporting the progression of acute leukemia in Friend virus-infected mice.  相似文献   

8.
An allelic series of mutations is an extremely valuable genetic resource for understanding gene function. Here we describe eight mutant alleles at the Steel (Sl) locus of mice that were induced with N-ethyl-N-nitrosourea (ENU). The product of the Sl locus is Kit ligand (or Kitl; also known as mast cell growth factor, stem cell factor, and Steel factor), which is a member of the helical cytokine superfamily and is the ligand for the Kit receptor tyrosine kinase. Seven of the eight ENU-induced Kitl(Sl) alleles, of which five cause missense mutations, one causes a nonsense mutation and exon skipping, and one affects a splice site, were found to contain point mutations in Kitl. Interestingly, each of the five missense mutations affects residues that are within, or very near, conserved alpha-helical domains of Kitl. These ENU-induced mutants should provide important information on structural requirements for function of Kitl and other helical cytokines.  相似文献   

9.
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.  相似文献   

10.
Middle T antigen (PymT) is the principal transforming component of polyomavirus, and rapidly induces hemangiomas in neonatal mice. PymT, a membrane-associated scaffold, recruits and activates Src family tyrosine kinases, and, once tyrosine phosphorylated, binds proteins with PTB and SH2 domains such as ShcA, phosphatidylinositol 3-kinase (PI3K) and phospholipase Cgamma-1 (PLCgamma-1). To explore the pathways required for endothelial transformation in vivo, we introduced PymT mutant forms into mice. PymT variants unable to bind PI3K and PLCgamma-1 directly induced hemangiomas similarly to wild type, but a mutant unable to bind ShcA was transformation compromised. Requirement for a ShcA PTB domain- binding site was suppressed by replacing this motif in PymT with YXN sequences, which bind the Grb2 SH2 domain upon phosphorylation. Surprisingly, PymT recruitment of ShcA and Grb2 correlated with PI3K activation. PymT mimics activated receptor tyrosine kinases by forming a ShcA-Grb2-Gab1 complex, thus inducing Gab1 tyrosine phosphorylation, which itself is associated with PI3K. Therefore, PymT activation of ShcA-Grb2 signaling is critical for endothelial transformation, and PymT can stimulate Grb2 signaling to both the MAP kinase and PI3K pathways.  相似文献   

11.
Mutations of the receptor tyrosine kinase, Kit, or its ligand, mast growth factor (Mgf), affect three unrelated cell populations: melanocytes, germ cells, and mast cells. Kit signaling is required initially to prevent cell death in these lineages both in vitro and in vivo. Mgf appears to play a role in the survival of some hematopoietic cells in vitro by modulating the activity of p53. Signaling by Mgf inhibits p53-induced apoptosis of erythroleukemia cell lines and suppresses p53-dependent radiation-induced apoptosis of bone marrow cells. We tested the hypothesis that cell survival in Kit mutant mice would be enhanced by p53 deficiency in vivo. Double-mutant mice, which have greatly reduced Kit receptor tyrosine kinase activity and also lack Trp53, were generated and the affected cell lineages examined. Mast cell, melanoblast, and melanocyte survival in the double Kit(W-v/W-v):Trp53(-/-) mutants was not increased compared to the single Kit(W-v/W-v):Trp53(+/+) mutants. However, double-mutant males showed an increase in sperm viability and could father litters, in contrast to their homozygous Kit mutant, wild-type p53 littermates. This germ cell rescue appears to be male specific, as female ovaries were similar in mice homozygous for the Kit mutant allele with or without p53. We conclude that defective Kit signaling in vivo results in apoptosis by a p53-independent pathway in melanocyte and mast cell lineages but that in male germ cells apoptosis in the absence of Kit is p53-dependent.  相似文献   

12.
The Kit receptor tyrosine kinase functions in hemato- poiesis, melanogenesis and gametogenesis. Kit receptor-mediated cellular responses include proliferation, survival, adhesion, secretion and differentiation. In mast cells, Kit-mediated recruitment and activation of phosphatidylinositol 3'-kinase (PI 3-kinase) produces phosphatidylinositol 3'-phosphates, plays a critical role in mediating cell adhesion and secretion and has contributory roles in mediating cell survival and proliferation. To investigate the consequences in vivo of blocking Kit-mediated PI 3-kinase activation we have mutated the binding site for the p85 subunit of PI 3-kinase in the Kit gene, using a knock-in strategy. Mutant mice have no pigment deficiency or impairment of steady-state hematopoiesis. However, gametogenesis is affected in several ways and tissue mast cell numbers are affected differentially. While primordial germ cells during embryonic development are not affected, Kit(Y719F)/Kit(Y719F) males are sterile due to a block at the premeiotic stages in spermatogenesis. Furthermore, adult males develop Leydig cell hyperplasia. The Leydig cell hyperplasia implies a role for Kit in Leydig cell differentiation and/or steroidogenesis. In mutant females follicle development is impaired at the cuboidal stages resulting in reduced fertility. Also, adult mutant females develop ovarian cysts and ovarian tubular hyperplasia. Therefore, a block in Kit receptor-mediated PI 3-kinase signaling may be compensated for in hematopoiesis, melanogenesis and primordial germ cell development, but is critical in spermatogenesis and oogenesis.  相似文献   

13.
The ligand for the Kit receptor tyrosine kinase is Kit ligand (Kitl; also known as mast cell growth factor, stem cell factor, and Steel factor), which is encoded at the Steel (Sl) locus of mice. Previous studies revealed that Kitl(Sl) mutations have semidominant effects; mild pigmentation defects and macrocytic, hypoplastic anemia occur in heterozygous mice, and more severe pigmentation defects and anemia occur in homozygotes. Lethality also occurs in mice homozygous for severe Kitl(Sl) mutations. We describe the effects of seven new N-ethyl-N-nitrosourea (ENU)-induced Kitl(Sl) mutations and two previously characterized severe Kitl(Sl) mutations on pigmentation, peripheral blood cells, and mouse survival. Mice heterozygous for each of the nine mutations had reduced coat pigmentation and macrocytosis of peripheral blood. In the case of some of these mutations, however, red blood cell (RBC) counts, hemoglobin concentrations, and hematocrits were normal in heterozygotes, even though homozygotes exhibited severely reduced RBC counts and lethality. In homozygous mice, the extent of anemia generally correlates with effects on viability for most Kitl(Sl) mutations; i.e., most mutations that cause lethality also cause a more severe anemia than that of mutations that allow viability. Interestingly, lethality and anemia were not directly correlated in the case of one Kitl(Sl) mutation.  相似文献   

14.
The scaffolding adapter Gab2 mediates cell signaling and responses evoked by various extracellular stimuli including several growth factors. Kit, the receptor for stem cell factor (SCF), plays a critical role in the proliferation and differentiation of a variety of cell types, including mast cells. Kit, via Tyr(567) and Tyr(719), activates Src family kinases (SFK) and PI3K respectively, which converge on the activation of a Rac/JNK pathway required for mast cell proliferation. However, how Kit Tyr(567) signals to Rac/JNK is not well understood. By analyzing Gab2(-/-) mast cells, we find that Gab2 is required for SCF-evoked proliferation, activation of Rac/JNK, and Ras. Upon Kit activation in wild-type mast cells, Gab2 becomes tyrosyl-phosphorylated and associates with Kit and Shp-2. Tyr(567), an SFK binding site in Kit, and SFK activity were required for Gab2 tyrosyl phosphorylation and association with Shp-2. By re-expressing Gab2 or a Gab2 mutant that cannot bind Shp-2 in Gab2(-/-) mast cells or acutely by deleting Shp-2 in mast cells, we found that Gab2 requires Shp-2 for SCF-evoked Rac/JNK, Ras activation, and mast cell proliferation. Lastly, by analyzing mast cells from mice with compound Gab2 and Kit Y719F mutations (i.e., Gab2(-/-): KitY719F/Y719F mice), we find that Gab2, acting in a parallel pathway to PI3K from Kit Tyr(719), regulates mast cell proliferation and development in specific tissues. Our data show that Gab2 via Shp-2 is critical for transmitting signals from Kit Tyr(567) to activate the Rac/JNK pathway controlling mast cell proliferation, which likely contributes to mast cell development in specific tissues.  相似文献   

15.
In response to binding of platelet-derived growth factor (PDGF), the PDGF receptor (PDGFR) beta subunit is phosphorylated on tyrosine residues and associates with numerous signal transduction enzymes, including the GTPase-activating protein of ras (GAP) and phosphatidylinositol 3-kinase (PI3K). Previous studies have shown that association of PI3K requires phosphorylation of tyrosine 751 (Y751) in the kinase insert and that this region of receptor forms at least a portion of the binding site for PI3K. In this study, the in vitro binding of GAP to the PDGFR was investigated. Like PI3K, GAP associates only with receptors that have been permitted to autophosphorylate, and GAP itself does not require tyrosine phosphate in order to stably associate with the phosphorylated PDGFR. To define which tyrosine residues are required for GAP binding, a panel of PDGFR phosphorylation site mutants was tested. Mutation of Y771 reduced the amount of GAP that associates to an undetectable level. In contrast, the F771 (phenylalanine at 771) mutant bound wild-type levels of PI3K, whereas the F740 and F751 mutants bound 3 and 23%, respectively, of the wild-type levels of PI3K but wild-type levels of GAP. The F740/F751 double mutant associated with wild-type levels of GAP, but no detectable PI3K activity, while the F740/F751/F771 triple mutant could not bind either GAP or PI3K. The in vitro and in vivo associations of GAP and PI3K activity to these PDGFR mutants were indistinguishable. The distinct tyrosine residue requirements suggest that GAP and PI3K bind different regions of the PDGFR. This possibility was also supported by the observation that the antibody to the PDGFR kinase insert Y751 region that blocks association of PI3K had only a minor effect on the in vitro binding of GAP. In addition, highly purified PI3K and GAP associated in the absence of other cellular proteins and neither cooperated nor competed with each other's binding to the PDGFR. Taken together, these studies indicate that GAP and PI3K bind directly to the PDGFR and have discrete binding sites that include portions of the kinase insert domain.  相似文献   

16.
Activation and function of the mTORC1 pathway in mast cells   总被引:1,自引:0,他引:1  
Little is known about the signals downstream of PI3K which regulate mast cell homeostasis and function following FcepsilonRI aggregation and Kit ligation. In this study, we investigated the role of the mammalian target of rapamycin complex 1 (mTORC1) pathway in these responses. In human and mouse mast cells, stimulation via FcepsilonRI or Kit resulted in a marked PI3K-dependent activation of the mTORC1 pathway, as revealed by the wortmannin-sensitive sequential phosphorylation of tuberin, mTOR, p70S6 kinase (p70S6K), and 4E-BP1. In contrast, in human tumor mast cells, the mTORC1 pathway was constitutively activated and this was associated with markedly elevated levels of mTORC1 pathway components. Rapamycin, a specific inhibitor of mTORC1, selectively and completely blocked the FcepsilonRI- and Kit-induced mTORC1-dependent p70S6K phosphorylation and partially blocked the 4E-BP1 phosphorylation. In parallel, although rapamycin had no effect on FcepsilonRI-mediated degranulation or Kit-mediated cell adhesion, it inhibited cytokine production, and kit-mediated chemotaxis and cell survival. Furthermore, Rapamycin also blocked the constitutive activation of the mTORC1 pathway and inhibited cell survival of tumor mast cells. These data provide evidence that mTORC1 is a point of divergency for the PI3K-regulated downstream events of FcepsilonRI and Kit for the selective regulation of mast cell functions. Specifically, the mTORC1 pathway may play a critical role in normal and dysregulated control of mast cell homeostasis.  相似文献   

17.
W/Wv mice are deficient intissue mast cells, and mast cells cultured from these mice do notproliferate in response to the c-kit ligand, stem cell factor (SCF). Inthis paper, we report that mouse bone marrow cultured mast cellsderived from W/Wv mice do adhereto fibronectin in the presence of SCF and exhibit chemotaxis to SCF,and we explore this model for the understanding of c-kit-mediatedsignaling pathways. Both in vitro and in vivo (in intact cells)phosphorylation experiments demonstrated a low residual level ofW/Wv c-kit proteinphosphorylation. SCF-induced responses inW/Wv mast cells were abolished bythe tyrosine kinase inhibitor herbimycin A and by thephospatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin butwere not affected by protein kinase C inhibitors. These observationsare consistent with the conclusions thatWv c-kit initiates a signalingprocess that is PI 3-kinase dependent and that mutatedWv c-kit retains the ability toinitiate mast cell adhesion and migration.

  相似文献   

18.
Steel factor (SLF, also called KIT-ligand, mast cell growth factor, or stem cell factor) acting through the tyrosine kinase receptor KIT is thought to be indispensable for the early phase of melanocyte development both in vivo and in vitro . In the present study, Kit-independent precursor cells were generated in mice expressing exogenous SLF in their skin keratinocytes and were detected as pigmented spots after administration of Kit function-blocking antibody. We successfully purified these precursor or stem cells as Kit+CD45 cells by flow cytometry. The purified cells showed normal but delayed differentiation into mature melanocytes, indicating the immature nature of Kit-independent precursors. The Kit-independent interfollicular population generated in SLF transgenic mice was suggested to be the counterpart of the follicular melanocyte stem cell based on the Kit-independent nature for their survival.  相似文献   

19.
Kit and its ligand, Kitl, function in hematopoiesis, melanogenesis, and gametogenesis. In the testis, Kitl is expressed by Sertoli cells and Kit is expressed by spermatogonia and Leydig cells. Kit functions are mediated by receptor autophosphorylation and subsequent association with signaling molecules, including phosphoinositide (PI) 3-kinase. We previously characterized the reproductive consequences of blocking Kit-mediated PI 3-kinase activation in KitY(719F)/Kit(Y719F) knockin mutant male mice. Only gametogenesis was affected in these mice, and males are sterile because of a block in spermatogenesis during the spermatogonial stages. In the present study, we investigated effects of the Kit(Y719F) mutation on Leydig cell development and steroidogenic function. Although the seminiferous tubules in testes of mutant animals are depleted of germ cells, the testes contain normal numbers of Leydig cells and the Leydig cells in these animals appear to have undergone normal differentiation. Evaluation of steroidogenesis in mutant animals indicates that testosterone levels are not significantly reduced in the periphery but that LH levels are increased 5-fold, implying an impairment of steroidogenesis in the mutant animals. Therefore, a role for Kit signaling in steroidogenesis in Leydig cells was sought in vitro. Purified Leydig cells from C57Bl6/J male mice were incubated with Kitl, and testosterone production was measured. Kitl-stimulated testosterone production was 2-fold higher than that in untreated controls. The Kitl-mediated testosterone biosynthesis in Leydig cells is PI 3-kinase dependent. In vitro, Leydig cells from mutant mice were steroidogenically more competent in response to LH than were normal Leydig cells. In contrast, Kitl-mediated testosterone production in these cells was comparable to that in normal cells. Because LH levels in mutant males are elevated and LH is known to stimulate testosterone biosynthesis, we proposed a model in which serum testosterone levels are controlled by elevated LH secretion. Leydig cells of mutant males, unable to respond effectively to Kitl stimulation, initially produce lower levels of testosterone, reducing testosterone negative feedback on the hypothalamic-pituitary axis. The consequent secretion of additional LH, under this hypothesis, causes a restoration of normal levels of serum testosterone. Kitl, acting via PI 3-kinase, is a paracrine regulator of Leydig cell steroidogenic function in vivo.  相似文献   

20.
The pleiotropic effects of the Kit receptor system are mediated by Kit-Ligand (KL) induced receptor autophosphorylation and its association with and activation of distinct second messengers, including phosphatidylinositol 3'-kinase (PI3-kinase), p21ras and mitogen-activated protein kinase (MAPK). To define the role of PI3-kinase, p21ras and MAPK in Kit-mediated cell proliferation, survival and adhesion in bone marrow-derived mast cells (BMMC), mutant Kit receptors were expressed in Wsh/Wsh BMMC lacking endogenous c-kit expression. The introduction of both murine Kit(S) and KitL (isoform containing a four amino acid insert) into Wsh/Wsh BMMC restored KL-induced proliferation, survival and adhesion to fibronectin, as well as activation of PI3-kinase, p21ras and MAPK, and induced expression of c-fos, junB, c-myc and c-myb mRNA. Substitution of tyrosine 719 in the kinase insert with phenylalanine (Y719F) abolished PI3-kinase activation, diminished c-fos and junB induction, and impaired KL-induced adhesion of BMMC to fibronectin. In addition, the Y719F mutation had partial effects on p21ras activation, cell proliferation and survival, while MAP kinase activation was not affected. On the other hand, Y821F substitution impaired proliferation and survival without affecting PI3-kinase, p21ras and MAPK activation, and induction of c-myc, c-myb, c-fos and c-jun mRNA, while KL-induced cell adhesion to fibronectin remained intact. In agreement with a role for PI3-kinase in Kit-mediated cell adhesion, wortmannin blocked Kit-mediated cell adhesion at concentrations known to specifically inhibit PI3-kinase. We conclude, that association of Kit with p85PI3-K, and thus with PI3-kinase activity, is necessary for a full mitogenic as well as adhesive response in mast cells. In contrast, tyrosine 821 is essential for Kit-mediated mitogenesis and survival, but not cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号