首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main sterol of the human cell membrane is cholesterol, whereas in yeast it is ergosterol. In this study, we constructed a cholesterol-producing yeast strain by disrupting the genes related to ergosterol synthesis and inserting the genes related to cholesterol synthesis. The total sterols of the mutant yeast were extracted and the sterol composition was analyzed by GC-MS. We confirmed that cholesterol was produced instead of ergosterol in yeast and subsequently examined the activity of the yeast G-protein-coupled receptor (GPCR) Ste2p. Ste2p signaling was assessed in wild type (WT) with ergosterol and the cholesterol-producing yeast instead of ergosterol to determine whether sterol composition affects the activity of the yeast GPCR. Our results demonstrated that Ste2p could transduce a signal even in the cholesterol-rich membrane, but the maximum signal intensity was weaker than that transduced in the ergosterol-rich original (WT) membrane. This result indicates that sterol composition affects the activity of yeast GPCRs, and thus, this provides new insight into GPCR-mediated transduction using yeast for future fundamental and applied studies on GPCRs from yeast to other organisms.  相似文献   

2.
We recently developed a display method for the directed evolution of integral membrane proteins in the inner membrane of Escherichia coli for higher expression and stability. For the neurotensin receptor 1, a G-protein-coupled receptor (GPCR), we had evolved a mutant with a 10-fold increase in functional expression that largely retains wild-type binding and signaling properties and shows higher stability in detergent-solubilized form. We have now evolved three additional human GPCRs. Unmodified wild-type receptor cDNA was subjected to successive cycles of mutagenesis and fluorescence-activated cell sorting, and functional expression could be increased for all three GPCR targets. We also present a new stability screening method in a 96-well assay format to quickly identify evolved receptors showing increased thermal stability in detergent-solubilized form and rapidly evaluate them quantitatively. Combining the two methods turned out to be very powerful; even for the most challenging GPCR target—the tachykinin receptor NK1, which is hardly expressed in E. coli and cannot be functionally solubilized—receptor mutants that are functionally expressed at 1 mg/l levels in E. coli and are stable in detergent solution could be quickly evolved. The improvements result from cumulative small changes in the receptor sequence. This combinatorial approach does not require preconceived notions for designing mutations. Our results suggest that this method is generally applicable to GPCRs. Existing roadblocks in structural and biophysical studies can now be removed by providing sufficient quantities of correctly folded and stable receptor protein.  相似文献   

3.
The concentration of detergent in membrane protein preparations can have a critical role on protein stability, function, and the potential for crystallization. Unfortunately, dialysis or protein concentration can lead to an unknown amount of detergent in the final membrane protein preparations. Here we present a method for the determination of detergent concentration based on refractive index of the detergent solution. This method was applied to quantitate the amount of detergent remaining in solution after concentration in various concentrators. We found that the ability of the tested detergents to pass through the molecular weight cutoff membrane correlates well with detergent micelle size. Therefore, the micelle size can be used as a rough guide to estimate the retention of a given detergent in various molecular weight cutoff concentrators. The refractive index method is exceptionally informative when coupled with size exclusion chromatography and light scattering, and can be used to determine the oligomeric state of the membrane protein, the size of a protein-associated micelle, as well as the amount and size of the unbound detergent micelle.  相似文献   

4.
G protein-coupled receptors (GPCRs) represent approximately 3% of the human proteome. They are involved in a large number of diverse processes and, therefore, are the most prominent class of pharmacological targets. Besides rhodopsin, X-ray structures of classical GPCRs have only recently been resolved, including the β1 and β2 adrenergic receptors and the A2A adenosine receptor. This lag in obtaining GPCR structures is due to several tedious steps that are required before beginning the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. With the aim to obtain active membrane receptors for functional and crystallization studies, we recently reported a screen of expression conditions for approximately 100 GPCRs in Escherichia coli, providing large amounts of inclusion bodies, a prerequisite for the subsequent refolding step. Here, we report a novel artificial chaperone-assisted refolding procedure adapted for the GPCR inclusion body refolding, followed by protein purification and characterization. The refolding of two selected targets, the mouse cannabinoid receptor 1 (muCB1R) and the human parathyroid hormone receptor 1 (huPTH1R), was achieved from solubilized receptors using detergent and cyclodextrin as protein folding assistants. We could demonstrate excellent affinity of both refolded and purified receptors for their respective ligands. In conclusion, this study suggests that the procedure described here can be widely used to refold GPCRs expressed as inclusion bodies in E. coli.  相似文献   

5.
Chabre M  le Maire M 《Biochemistry》2005,44(27):9395-9403
Rhodopsin, the first purified G-protein-coupled receptor (GPCR), was characterized as a functional monomer 30 year ago, but dimerization of GPCRs recently became the new paradigm of signal transduction. It has even been claimed, on the basis of recent biophysical and biochemical studies, that this new concept could be extended to higher-order oligomerization. Here this view is challenged. The new studies of rhodopsin and other simple (class 1a) GPCRs solubilized in detergent are re-assessed and are compared to the earlier classical studies of rhodopsin and other membrane proteins solubilized in detergent. The new studies are found to strengthen rather than invalidate the conclusions of the early ones and to support a monomeric model for rhodopsin and other class 1a GPCRs. A molecular model is proposed for the functional coupling of a rhodopsin monomeric unit with a G-protein heterotrimer. This model should be valid even for GPCRs that exist as structural dimers.  相似文献   

6.
The effect of low concentrations of nonionic detergents with different critical micelle concentrations such as Triton X-100, Brij 35 and octylglucoside on rabbit liver microsomes is studied by means of 31P-NMR, 1H-NMR, dynamic light scattering and functional investigations. Hexane phosphonic acid diethyl ester was used as a phosphorus membrane probe molecule to monitor the interaction of detergent molecules with microsomal phospholipids by 31P-NMR. This method is more sensitive than 31P-NMR of phospholipids alone and permitted the estimation of the maximum number of detergent molecules which can be incorporated in microsomes without the formation of mixed micelles outside the membrane. These membrane saturation concentrations were determined to be 0.07 (Brij 35), 0.1 (Triton X-100) and 0.4 (octylglucoside) (molar ratio of detergent/total phospholipids). Above these detergent concentrations, mixed micelles consisting of detergent and membrane constituents are formed, coexisting with the microsomes up to the membrane solubilization concentration. The results indicate a dependence of the membrane saturation concentration on the critical micelle concentration of the detergent and a preferential removal of phosphatidylcholine over phosphatidylethanolamine from the microsomes by all detergents studied.  相似文献   

7.
The increased focus on the structural and physical properties of membrane proteins has made it critical to develop methods that provide a reliable estimate of membrane protein stability. A simple approach is to monitor the protein's conformational changes in mixed detergent systems, typically consisting of an anionic (denaturing) and non-ionic (non-denaturing) component. Linear correlations between, e.g., the melting temperature and the bulk mole fraction of the anionic component have been observed. However, a potential complication is that the bulk mole fraction is not identical to the mole fraction in the mixed micelle, which is the local environment experienced by the membrane protein. Here, we present an extensive analysis of the thermal stability of the membrane-integrated domain of the outer membrane protein AIDA in the presence of different mixed micelles. In the micelle system SDS-octyl-polyoxyethylene, the melting temperature in the absence of SDS extrapolates to 113 degrees C using bulk mole fractions. However, for mixed micelles involving short-chain detergents or phospholipids, the melting temperature calculated using bulk mole fractions reaches values up to several hundred degrees higher than 113 degrees C and can only be obtained by extrapolation over a narrow mole fraction interval. Furthermore, there is a non-linear relationship between the melting temperature and bulk mole fractions for mixed micelle systems involving cationic detergents (also denaturing). We show that if we instead use the micellar mole fraction as a parameter for denaturing detergent strength, we obtain linear correlations which extrapolate to more or less the same value of the melting temperature. There remains some scatter in the extrapolated values of the melting temperature in different binary systems, which suggest that additional micellar interactions may play a role. Nevertheless, in general terms, the mixed micellar composition is a good parameter to describe the membrane protein's microenvironment. Note, however, that for the mixed micelle system involving SDS and dodecyl maltoside, which has been used by several research groups to determine membrane protein stability, the estimate provided by bulk mole fraction leads to similar values as that of micellar mole fractions.  相似文献   

8.
The increased focus on the structural and physical properties of membrane proteins has made it critical to develop methods that provide a reliable estimate of membrane protein stability. A simple approach is to monitor the protein's conformational changes in mixed detergent systems, typically consisting of an anionic (denaturing) and non-ionic (non-denaturing) component. Linear correlations between, e.g., the melting temperature and the bulk mole fraction of the anionic component have been observed. However, a potential complication is that the bulk mole fraction is not identical to the mole fraction in the mixed micelle, which is the local environment experienced by the membrane protein. Here, we present an extensive analysis of the thermal stability of the membrane-integrated domain of the outer membrane protein AIDA in the presence of different mixed micelles. In the micelle system SDS-octyl-polyoxyethylene, the melting temperature in the absence of SDS extrapolates to 113 °C using bulk mole fractions. However, for mixed micelles involving short-chain detergents or phospholipids, the melting temperature calculated using bulk mole fractions reaches values up to several hundred degrees higher than 113 °C and can only be obtained by extrapolation over a narrow mole fraction interval. Furthermore, there is a non-linear relationship between the melting temperature and bulk mole fractions for mixed micelle systems involving cationic detergents (also denaturing). We show that if we instead use the micellar mole fraction as a parameter for denaturing detergent strength, we obtain linear correlations which extrapolate to more or less the same value of the melting temperature. There remains some scatter in the extrapolated values of the melting temperature in different binary systems, which suggest that additional micellar interactions may play a role. Nevertheless, in general terms, the mixed micellar composition is a good parameter to describe the membrane protein's microenvironment. Note, however, that for the mixed micelle system involving SDS and dodecyl maltoside, which has been used by several research groups to determine membrane protein stability, the estimate provided by bulk mole fraction leads to similar values as that of micellar mole fractions.  相似文献   

9.
Solution small angle x-ray scattering can be used to study the association of transmembrane proteins solubilized in detergent micelles. We have used the alpha-helical transmembrane domain of the human erythrocyte glycophorin A (GpA) fused to the carboxyl terminus of monomeric staphylococcal nuclease (SN/GpA) as a model system for study. By matching the average electron density of the detergent micelles to that of the buffer solution, the micelle contribution to the small angle scattering vanishes, and the molecular weight and the radius of gyration of the proteins can be determined. SN/GpA has been found to dimerize in a zwitterionic detergent micelle, N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB), whose average electron density naturally matches the electron density of an aqueous buffer. The dimerization occurs through the transmembrane domains of GpA. With the aid of the nuclease domain scattering, the orientation of the helices within a dimer can be determined to be parallel by radius of gyration analysis. The association constant of a mutant (G83I) that weakens the GpA dimerization has been determined to be 24 microM in the DDMAB environment. The experimental methods established here could be used to apply solution small angle x-ray scattering to studying the association and interactions of other membrane proteins.  相似文献   

10.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.  相似文献   

11.
G‐protein‐coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR‐mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two‐hybrid (MYTH) approach and identified interacting partners for 48 selected full‐length human ligand‐unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5‐HT4d, and adenosine ADORA2A receptors. Our data represent the first large‐scale interactome mapping for human GPCRs and provide a valuable resource for the analysis of signaling pathways involving this druggable family of integral membrane proteins.  相似文献   

12.
G-protein coupled receptors (GPCRs) typically have an amphipathic helix (“helix 8”) immediately C-terminal to the transmembrane helical bundle. To date, a number of functional roles have been associated with GPCR helix 8 segments, but structure-function analysis for this region remains limited. Here, we examine helix 8 of the apelin receptor (AR or APJ), a class A GPCR with wide physiological and pathophysiological relevance. The 71 residue C-terminal tail of the AR is primarily intrinsically disordered, with a detergent micelle-induced increase in helical character. This helicity was localized to the helix 8 region, in good agreement with the recent AR crystal structure. A series of helix 8 mutants were made to reduce helicity, remove amphipathy, or flip the hydrophobic and hydrophilic faces. Each mutant AR was tested both biophysically, in the isolated C-terminal tail, and functionally in HEK 293 T cells, for full-length AR. In all instances, micelle interactions were maintained, and steady-state AR expression was efficient. However, removal of amphipathy or helical character led to a significant decrease in cell surface localization. Flipping of helix 8 amphipathic topology restored cell surface localization to some degree, but still was significantly reduced relative to wild-type. Structural integrity, amphipathy to drive membrane association, and correct topology of helix 8 membrane association all thus appear important for cell surface localization of the AR. This behavior correlates well to GPCR C-terminal tail sequence motifs, implying that these serve to specify key topological features of helix 8 and its proximity to the transmembrane domain.  相似文献   

13.
The recently reported crystal structure of bovine rhodopsin revealed a cytoplasmic helix (helix 8) in addition to the seven transmembrane helices. This domain is roughly perpendicular to the transmembrane bundle in the presence of an interface and may be a loop-like structure in the absence of an interface. Several studies carried out on this domain suggested that it might act as a conformational switch between the inactive and activated states of this G-protein coupled receptor (GPCR). These results raised the question whether helix 8 may be an important feature of other GPCRs as well. To explore this question, we determined the structure of a peptide representing the putative helix 8 domain in another receptor that belongs to the rhodopsin family of GPCRs, the human beta(2) adrenergic receptor (hbeta(2)AR), using two-dimensional (1)H nuclear magnetic resonance (NMR). The key results from this structural study are that the putative helix 8 domain is helical in detergent and in DMSO while in water this region is disordered; the conformation is therefore dependent upon the environment. Comparison of data from five GPCRs suggests that these observations may be generally important for GPCR structure and function.  相似文献   

14.
Cells, tissues and organs undergo phenotypic changes and deteriorate as they age. Cell growth arrest and hyporesponsiveness to extrinsic stimuli are all hallmarks of senescent cells. Most such external stimuli received by a cell are processed by two different cell membrane systems: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). GPCRs form the largest gene family in the human genome and they are involved in most relevant physiological functions. Given the changes observed in the expression and activity of GPCRs during aging, it is possible that these receptors are directly involved in aging and certain age-related pathologies. On the other hand, both GPCRs and G proteins are associated with the plasma membrane and since lipid-protein interactions regulate their activity, they can both be considered to be sensitive to the lipid environment. Changes in membrane lipid composition and structure have been described in aged cells and furthermore, these membrane changes have been associated with alterations in GPCR mediated signaling in some of the main health disorders in elderly subjects. Although senescence could be considered a physiologic process, not all aging humans develop the same health disorders. Here, we review the involvement of GPCRs and their lipid environment in the development of the major human pathologies associated with aging such as cancer, neurodegenerative disorders and cardiovascular pathologies.  相似文献   

15.
Cells, tissues and organs undergo phenotypic changes and deteriorate as they age. Cell growth arrest and hyporesponsiveness to extrinsic stimuli are all hallmarks of senescent cells. Most such external stimuli received by a cell are processed by two different cell membrane systems: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). GPCRs form the largest gene family in the human genome and they are involved in most relevant physiological functions. Given the changes observed in the expression and activity of GPCRs during aging, it is possible that these receptors are directly involved in aging and certain age-related pathologies. On the other hand, both GPCRs and G proteins are associated with the plasma membrane and since lipid-protein interactions regulate their activity, they can both be considered to be sensitive to the lipid environment. Changes in membrane lipid composition and structure have been described in aged cells and furthermore, these membrane changes have been associated with alterations in GPCR mediated signaling in some of the main health disorders in elderly subjects. Although senescence could be considered a physiologic process, not all aging humans develop the same health disorders. Here, we review the involvement of GPCRs and their lipid environment in the development of the major human pathologies associated with aging such as cancer, neurodegenerative disorders and cardiovascular pathologies.  相似文献   

16.
G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A2A receptor (A2AR)], in the total absence of detergent at any stage, by exploiting spontaneous encapsulation by styrene maleic acid (SMA) co-polymer direct from the membrane into a nanoscale SMA lipid particle (SMALP). Furthermore, the A2AR–SMALP, generated from yeast (Pichia pastoris) or mammalian cells, exhibited increased thermostability (∼5°C) compared with detergent [DDM (n-dodecyl-β-D-maltopyranoside)]-solubilized A2AR controls. The A2AR–SMALP was also stable when stored for prolonged periods at 4°C and was resistant to multiple freeze-thaw cycles, in marked contrast with the detergent-solubilized receptor. These properties establish the potential for using GPCR–SMALP in receptor-based drug discovery assays. Moreover, in contrast with nanodiscs stabilized by scaffold proteins, the non-proteinaceous nature of the SMA polymer allowed unobscured biophysical characterization of the embedded receptor. Consequently, CD spectroscopy was used to relate changes in secondary structure to loss of ligand binding ([3H]ZM241385) capability. SMALP-solubilization of GPCRs, retaining the annular lipid environment, will enable a wide range of therapeutic targets to be prepared in native-like state to aid drug discovery and understanding of GPCR molecular mechanisms.  相似文献   

17.
G-protein coupled receptors (GPCRs) are key elements in signal transduction pathways of eukaryotic cells and they play central roles in many human diseases. So far, most structural and functional approaches have been limited by the immense difficulties in the production of sufficient amounts of protein samples in conventional expression systems based on living cells. We report the high level production of six different GPCRs in an individual cell-free expression system based on Escherichia coli extracts. The open nature of cell-free systems allows the addition of detergents in order to provide an artificial hydrophobic environment for the reaction. This strategy defines a completely new technique for the production of membrane proteins that can directly associate with detergent micelles upon translation. We demonstrate the efficient overproduction of the human melatonin 1B receptor, the human endothelin B receptor, the human and porcine vasopressin type 2 receptors, the human neuropeptide Y4 receptor and the rat corticotropin releasing factor receptor by cell-free expression. In all cases, the long chain polyoxyethylene detergent Brij78 was found to be highly effective for solubilization and milligram amounts of soluble protein could be generated in less than 24h. Single particle analysis indicated a homogenous distribution of predominantly protein dimers of the cell-free expressed GPCR samples, with dimensions similar to the related rhodopsin. Ligand interaction studies with the endothelin B receptor and a derivative of its peptide ligand ET-1 gave further evidence of a functional folding of the cell-free produced protein.  相似文献   

18.
G-protein coupled receptors (GPCRs) are key elements in signal transduction pathways of eukaryotic cells and they play central roles in many human diseases. So far, most structural and functional approaches have been limited by the immense difficulties in the production of sufficient amounts of protein samples in conventional expression systems based on living cells. We report the high level production of six different GPCRs in an individual cell-free expression system based on Escherichia coli extracts. The open nature of cell-free systems allows the addition of detergents in order to provide an artificial hydrophobic environment for the reaction. This strategy defines a completely new technique for the production of membrane proteins that can directly associate with detergent micelles upon translation. We demonstrate the efficient overproduction of the human melatonin 1B receptor, the human endothelin B receptor, the human and porcine vasopressin type 2 receptors, the human neuropeptide Y4 receptor and the rat corticotropin releasing factor receptor by cell-free expression. In all cases, the long chain polyoxyethylene detergent Brij78 was found to be highly effective for solubilization and milligram amounts of soluble protein could be generated in less than 24 h. Single particle analysis indicated a homogenous distribution of predominantly protein dimers of the cell-free expressed GPCR samples, with dimensions similar to the related rhodopsin. Ligand interaction studies with the endothelin B receptor and a derivative of its peptide ligand ET-1 gave further evidence of a functional folding of the cell-free produced protein.  相似文献   

19.
G protein-coupled receptors (GPCRs), encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER) method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(alpha) root-mean-squared deviation from native of 4.6 angstroms, with a root-mean-squared deviation in the transmembrane helix region of 2.1 angstroms. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness and robustness of the in silico models for GPCR functional analysis. All predicted GPCR models are freely available for noncommercial users on our Web site (http://www.bioinformatics.buffalo.edu/GPCR).  相似文献   

20.
G-protein coupled receptors (GPCRs) constitute the largest family of intercellular signaling molecules and are estimated to be the target of more than 50% of all modern drugs. As with most integral membrane proteins (IMPs), a major bottleneck in the structural and biochemical analysis of GPCRs is their expression by conventional expression systems. Cell-free (CF) expression provides a relatively new and powerful tool for obtaining preparative amounts of IMPs. However, in the case of GPCRs, insufficient homogeneity of the targeted protein is a problem as the in vitro expression is mainly done with detergents, in which aggregation and solubilization difficulties, as well as problems with proper folding of hydrophilic domains, are common. Here, we report that using CF expression with the help of a fructose-based polymer, NV10 polymer (NVoy), we obtained preparative amounts of homogeneous GPCRs from the three GPCR families. We demonstrate that two GPCR B family members, corticotrophin-releasing factor receptors 1 and 2β are not only solubilized in NVoy but also have functional ligand-binding characteristics with different agonists and antagonists in a detergent-free environment as well. Our findings open new possibilities for functional and structural studies of GPCRs and IMPs in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号