首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to identify novel multifunctional drug candidates for the treatment of Alzheimer’s disease (AD), a series of hybrid molecules were synthesised by reacting N-(aminoalkyl)tacrine with salicylic aldehyde or derivatives of 2-aminobenzaldehyde. These compounds were then evaluated as multifunctional anti-Alzheimer’s disease agents. All of the hybrids are potential biometal chelators, and in addition, most of them were better antioxidants and inhibitors of cholinesterases and amyloid-β (Aβ) aggregation than the lead compound tacrine. Compound 7c has the potential to be a candidate for AD therapy: it is a much better inhibitor of acetylcholinesterase (AChE) than tacrine (IC50: 0.55 nM vs 109 nM), has good biometal chelation ability, is able to inhibit Aβ aggregation and has moderate antioxidant activity (1.22 Trolox equivalents).  相似文献   

2.
A series of berberine-phenyl-benzoheterocyclic (26-29) and tacrine-phenyl-benzoheterocyclic hybrids (44-46) were synthesised and evaluated as multifunctional anti-Alzheimer's disease agents. Compound 44b, tacrine linked with phenyl-benzothiazole by 3-carbon spacers, was the most potent AChE inhibitor with an IC(50) value of 0.017 μM. This compound demonstrated similar Aβ aggregation inhibitory activity with cucurmin (51.8% vs 52.1% at 20 μM, respectively), indicating that this hybrid is an excellent multifunctional drug candidate for AD.  相似文献   

3.
By connecting chromanone with dithiocarbamate moieties through flexible linkers, a series of hybrids as novel multifunctional AChE inhibitors have been designed and synthesized. Most of these compounds displayed strong and excellently selective inhibition to eeAChE as well as potent inhibition to self- and AChE-induced Aβ aggregation. Among them, compound 6c showed the best activity to inhibit eeAChE (IC50 = 0.10 μM) and AChE-induced Aβ aggregation (33.02% at 100 μM), and could effectively inhibit self-induced Aβ aggregation (38.25% at 25 μM). Kinetic analysis and docking study indicated that compound 6c could target both the CAS and PAS, suggesting that it was a dual binding site inhibitor for AChE. Besides, it exhibited good ability to penetrate the BBB and low neurotoxicity in SH-SY5Y cells. More importantly, compound 6c was well tolerated in mice (2500 mg/kg, po) and could attenuate the memory impairment in a scopolamine-induced mouse model. Overall, these results highlight 6c as a promising multifunctional agent for treating AD and also demonstrate that the dithiocarbamate is a valid scaffold for design of multifunctional AChE inhibitors.  相似文献   

4.
A novel series of N,N'-bis-methylenedioxybenzyl-alkylenediamines 5a-5g have been designed, synthesized and evaluated as bivalent anti-Alzheimer's disease ligands. The enzyme inhibition assay results indicated that compounds 5e-5g inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the micromolar range (IC(50), 2.76-4.24 μM for AChE and 3.02-5.14 μM for BuChE), which was in the same potential as the reference compound rivastigmine (IC(50), 5.50 μM for AChE and 1.60 μM for BuChE). It was found that compounds could bind simultaneously to the peripheral and catalytic sites of AChE. β-Amyloid (Aβ) aggregation inhibition assay results showed that compound 5e exhibited highest self-mediated Aβ fibril aggregation inhibition activity (40.3%) with a similar potential as curcumin (41.6%). It was also found that 5e-5g did not affect neuroblastoma cell viability at the concentration of 50 μM.  相似文献   

5.
A group of 2-substituted N-(naphth-1-ylmethyl)pyrimidin-4-amines (6a-k) and N-benzhydrylpyrimidin-4-amines (7a-k) in conjunction with varying steric and electronic properties at the C-2 position were designed, synthesized and evaluated as dual cholinesterase and amyloid-β (Aβ)-aggregation inhibitors. The naphth-1-ylmethyl compound 6f (2-(4-cyclohexylpiperazin-1-yl)-N-(naphth-1-ylmethyl)pyrimidin-4-amine) exhibited optimum dual ChE (AChE IC(50)=8.0 μM, BuChE IC(50)=3.9 μM) and hAChE-promoted Aβ-aggregation inhibition (30.8% at 100 μM), whereas in the N-benzhydryl series, compound 7f (N-benzhydryl-2-(4-cyclohexylpiperazin-1-yl)pyrimidin-4-amine) exhibited optimum combination of dual ChE (AChE IC(50)=10.0 μM, BuChE IC(50)=7.6μM) and hAChE-promoted Aβ-aggregation inhibition (32% at 100 μM). These results demonstrate that a 2,4-disubstituted pyrimidine ring serves as a suitable template to target multiple pathological routes in AD, with a C-2 cyclohexylpiperazine substituent providing dual ChE inhibition and potency whereas a C-4 diphenylmethane substituent provides Aβ-aggregation inhibition.  相似文献   

6.
A series of novel triazole-containing berberine derivatives were synthesized via the azide-alkyne cycloaddition reaction. Their biological activity as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were evaluated. Among them, compound 16d, which featured a diisopropylamino substitution at the 4-position of triazole ring, was found to be a potent inhibitor of AChE, with IC(50) value of 0.044 μM. Compound 18d, which beares a butyl at the 4-position of the triazole ring, showed the highest potency of β-amyloid aggregation inhibition (77.9% at 20 μM). Molecular modeling studies indicated that the triazole moiety of berberine derivatives displayed a face-to-face π-π stacking interaction in a 'sandwich' form with the Trp84 (4.09 ?) and Phe330 (4.33 ?) in catalytic sites of AChE.  相似文献   

7.
A novel class of 2,4-disubstituted pyrimidines (7a-u, 8a-f, 9a-e) that possess substituents with varying steric and electronic properties at the C-2 and C-4 positions, were designed, synthesized and evaluated as dual cholinesterase and amyloid-β (Aβ)-aggregation inhibitors. In vitro screening identified N-(naphth-1-ylmethyl)-2-(pyrrolidin-1-yl)pyrimidin-4-amine (9a) as the most potent AChE inhibitor (IC(50)=5.5 μM). Among this class of compounds, 2-(4-methylpiperidin-1-yl)-N-(naphth-1-ylmethyl)pyrimidin-4-amine (9e) was identified as the most potent and selective BuChE inhibitor (IC(50)=2.2 μM, selectivity index=11.7) and was about 5.7-fold more potent compared to the commercial, approved reference drug galanthamine (BuChE IC(50)=12.6 μM). In addition, the selective AChE inhibitor N-benzyl-2-(4-methylpiperazin-1-yl)pyrimidin-4-amine (7d), exhibited good inhibition of hAChE-induced aggregation of Aβ(1-40) fibrils (59% inhibition). Furthermore, molecular modeling studies indicate that a central pyrimidine ring serves as a suitable template to develop dual inhibitors of cholinesterase and AChE-induced Aβ aggregation thereby targeting multiple pathological routes in AD.  相似文献   

8.
A series of salicylamide derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease. In vitro assays demonstrated that most of the derivatives were selective AChE inhibitors. They showed good inhibitory activities of self- and Cu2+-induced Aβ1–42 aggregation, and significant antioxidant activities. Among them, compound 15b exhibited good inhibitory activity toward RatAChE and EeAChE with IC50 value of 10.4 μM and 15.2 μM, respectively. Moreover, 15b displayed high antioxidant activity (2.46 Trolox equivalents), good self- and Cu2+-induced Aβ1–42 aggregation inhibitory potency (42.5% and 31.4% at 25.0 μM, respectively) and moderate disaggregation ability to self- and Cu2+-induced Aβ1–42 aggregation fibrils (23.4% and 27.0% at 25 μM, respectively). Furthermore, 15b also showed biometal chelating abilities, anti-neuroinflammatory ability and BBB permeability. These multifunctional properties indicated compound 15b was worthy of being chosen for further pharmacokinetics, toxicity and behavioral researches to test its potential for AD treatment.  相似文献   

9.
The presented project started by screening a library consisting of natural and natural based compounds for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Active compounds were chemically clustered into groups and further tested on the human cholinesterases isoforms. The aim of the presented study was to identify compounds that could be used as leads to target two key mechanisms associated with the AD’s pathogenesis simultaneously: cholinergic depletion and beta amyloid (Aβ) aggregation. Berberin, palmatine and chelerythrine, chemically clustered in the so-called isoquinoline group, showed promising cholinesterase inhibitory activity and were therefore further investigated. Moreover, the compounds demonstrated moderate to good inhibition of Aβ aggregation as well as the ability to disaggregate already preformed Aβ aggregates in an experimental set-up using HFIP as promotor of Aβ aggregates. Analysis of the kinetic mechanism of the AChE inhibition revealed chelerythrine as a mixed inhibitor. Using molecular docking studies, it was further proven that chelerythrine binds on both the catalytic site and the peripheral anionic site (PAS) of the AChE. In view of this, we went on to investigate its effect on inhibiting Aβ aggregation stimulated by AChE. Chelerythrine showed inhibition of fibril formation in the same range as propidium iodide. This approach enabled for the first time to identify a cholinesterase inhibitor of natural origin—chelerythrine—acting on AChE and BChE with a dual ability to inhibit Aβ aggregation as well as to disaggregate preformed Aβ aggregates. This compound could be an excellent starting point paving the way to develop more successful anti-AD drugs.  相似文献   

10.
A series of isaindigotone derivatives and analogues were designed, synthesized and evaluated as dual inhibitors of cholinesterases (ChEs) and self-induced β-amyloid (Aβ) aggregation. The synthetic compounds had IC(50) values at micro or nano molar range for cholinesterase inhibition, and some compounds exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE, which were much better than the isaindigotone derivatives previously reported by our group. Most of these compounds showed higher self-induced Aβ aggregation inhibitory activity than a reference compound curcumin. The structure-activity relationship studies revealed that the derivatives with higher inhibition activity on AChE also showed higher selectivity for AChE over BuChE. Compound 6c exhibiting excellent inhibition for both AChE and self-induced Aβ aggregation was further studied using CD, EM, molecular docking and kinetics.  相似文献   

11.
A new series of tacrine-multialkoxybenzene hybrids (9a-9n) were designed, synthesized and evaluated as dual inhibitors of cholinesterases (ChEs) and self-induced β-amyloid (Aβ) aggregation. All the synthesized compounds had high acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity with IC?? values at the nanomolar range, which were much better than tacrine alone. A Lineweaver-Burk plot and molecular modeling study showed that these hybrids targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, compounds 9a-9f with methylenedioxybenzene moiety showed higher self-induced Aβ aggregation inhibitory activity than a reference compound, curcumin. These compounds could be selected as multi-potent agents for further investigation to treat AD.  相似文献   

12.
A novel series of N,N′-bis-methylenedioxybenzyl-alkylenediamines 5a5g have been designed, synthesized and evaluated as bivalent anti-Alzheimer’s disease ligands. The enzyme inhibition assay results indicated that compounds 5e5g inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the micromolar range (IC50, 2.76–4.24 µM for AChE and 3.02–5.14 µM for BuChE), which was in the same potential as the reference compound rivastigmine (IC50, 5.50 µM for AChE and 1.60 µM for BuChE). It was found that compounds could bind simultaneously to the peripheral and catalytic sites of AChE. β-Amyloid (Aβ) aggregation inhibition assay results showed that compound 5e exhibited highest self-mediated Aβ fibril aggregation inhibition activity (40.3%) with a similar potential as curcumin (41.6%). It was also found that 5e5g did not affect neuroblastoma cell viability at the concentration of 50 μM.  相似文献   

13.
Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder affecting the elderly people. For the AD treatment, there is inefficiency in the existing medication, as these drugs reduce only the symptoms of the disease. Since multiple pathological proteins are involved in the development of AD, searching for a single molecule targeting multiple AD proteins will be a new strategy for the management of AD. In view of this, the present study was designed to synthesize and evaluate the multifunctional neuroprotective ability of the sesquiterpene glycoside α-bisabolol β-D-fucopyranoside (ABFP) against multiple targets like acetylcholinesterase, oxidative stress and β-amyloid peptide aggregation induced cytotoxicity. In silico computational docking and simulation studies of ABFP with acetylcholinesterase (AChE) showed that it can interact with Asp74 and Thr75 residues of the enzyme. The in vitro studies showed that the compound possess significant ability to inhibit the AChE enzyme apart from exhibiting antioxidant, anti-aggregation and disaggregation properties. In addition, molecular dynamics simulation studies proved that the interacting residue between Aβ peptide and ABFP was found to be involved in Leu34 and Ile31. Furthermore, the compound was able to protect the Neuro2 a cells against Aβ25-35 peptide induced toxicity. Overall, the present study evidently proved ABFP as a neuroprotective agent, which might act as a multi-target compound for the treatment of Alzheimer’s disease.  相似文献   

14.
A series of tacrine-(β-carboline) hybrids (11aq) were designed, synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer’s disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation, Cu2+-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, 11l presented the greatest ability to inhibit cholinesterase (IC50, 21.6 nM for eeAChE, 63.2 nM for hAChE and 39.8 nM for BuChE), good inhibition of Aβ aggregation (65.8% at 20 μM) and good antioxidant activity (1.57 trolox equivalents). Kinetic and molecular modeling studies indicated that 11l was a mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 11l could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). These results suggested that 11l might be an excellent multifunctional agent for AD treatment.  相似文献   

15.
Alzheimer’s disease (AD) is a multifactorial disorder with several target proteins contributing to its etiology. In search for multifunctional anti-AD drug candidates, taking into account that the acetylcholinesterase (AChE) and beta-amyloid (Aβ) aggregation are particularly important targets for inhibition, the tacrine and benzothiazole (BTA) moieties were conjugated with suitable linkers in a novel series of hybrids. The designed compounds (7a7e) were synthesized and in vitro as well as in ex vivo evaluated for their capacity for the inhibition of acetylcholinesterase (AChE) and Aβ self-induced aggregation, and also for the protection of neuronal cells death (SHSY-5Y cells, AD and MCI cybrids). All the tacrine–BTA hybrids displayed high in vitro activities, namely with IC50 values in the low micromolar to sub-micromolar concentration range towards the inhibition of AChE, and high percentages of inhibition of the self-induced Aβ aggregation. Among them, compound 7a, with the shortest linker, presented the best inhibitory activity of AChE (IC50 = 0.34 μM), while the highest activity as anti-Aβ42 self-aggregation, was evidenced for compound 7b (61.3%, at 50 μM. The docking studies demonstrated that all compounds are able to interact with both catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Our results show that compounds 7d and 7e improved cell viability in cells treated with Aβ42 peptide. Overall, these multi-targeted hybrid compounds appear as promising lead compounds for the treatment of Alzheimer’s disease.  相似文献   

16.
Abstract

A series of novel quinolinone derivatives bearing dithiocarbamate moiety were designed and synthesised as multifunctional AChE inhibitors for the treatment of AD. Most of these compounds exhibited strong and clearly selective inhibition to eeAChE. Among them, compound 4c was identified as the most potent inhibitor to both eeAChE and hAChE (IC50 = 0.22?μM for eeAChE; IC50 = 0.16?μM for hAChE), and it was also the best inhibitor to AChE-induced Aβ aggregation (29.02% at 100?μM) and an efficient inhibitor to self-induced Aβ aggregation (30.67% at 25?μM). Kinetic and molecular modelling studies indicated that compound 4c was a mixed-type inhibitor, which could interact simultaneously with the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4c had good ability to cross the BBB, showed no toxicity on SH-SY5Y neuroblastoma cells and was well tolerated in mice at doses up to 2500?mg/kg (po).  相似文献   

17.
We investigated a group of 2-benzylpiperidin-N-benzylpyrimidin-4-amines with various electron-withdrawing or electron-donating groups (EWGs or EDGs, respectively) as multi-targeted Alzheimer's disease (AD) therapeutics. The synthesized derivatives were screened for anti-cholinesterase (AChE and BuChE), anti-Aβ-aggregation (AChE- and self-induced) and anti-β-secretase (BACE-1) activities in an effort to identify lead, multifunctional candidates as part of our multi-targeted approach to treat AD. Biological assessment revealed that the nature of the substituent on the C-4 benzylamine group (e.g., halogen vs methoxy-based) greatly affected the biological profile. In vitro screening identified N(2)-(1-benzylpiperidin-4-yl)-N(4)-(3,4-dimethoxybenzyl)pyrimidine-2,4-diamine (7h) as the lead candidate with a dual ChE (AChE IC(50)=9.9 μM; BuChE IC(50)=11.4 μM), Aβ-aggregation (AChE-induced=59.3%; self-induced=17.4% at 100 μM) and BACE-1 (34% inhibition at 10 μM) inhibitory profile along with good cell viability (% neuroblastoma cell viability at 40 μM=81.0%). Molecular modeling studies indicate that a central pyrimidine-2,4-diamine ring serves as a suitable template to develop novel small molecule candidates to target multiple pathological routes in AD.  相似文献   

18.
A series of berberine–thiophenyl hybrids were designed, synthesised, and evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and β-amyloid (Aβ) aggregation and as antioxidants. Among these hybrids, compounds 4f and 4i, berberine linked with o-methylthiophenyl and o-chlorothiophenyl by a 2-carbon spacer, were observed to be potent inhibitors of AChE, with IC50 values of 0.077 and 0.042 μM, respectively. Of the tested compounds, 4i was also the most potent inhibitor of BuChE, with an IC50 value of 0.662 μM. Kinetic studies and molecular modelling simulations of the AChE-inhibitor complex indicated that a mixed-competitive binding mode existed for these berberine derivatives. The biological studies also demonstrated that these hybrids displayed interesting activities, including Aβ aggregation inhibition and antioxidant properties.  相似文献   

19.
A novel series of compounds obtained by fusing the acetylcholinesterase (AChE) inhibitor donepezil and the antioxidant melatonin were designed as multi-target-directed ligands for the treatment of Alzheimer’s disease (AD). In vitro assay indicated that most of the target compounds exhibited a significant ability to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (eqBuChE and hBuChE), and β-amyloid (Aβ) aggregation, and to act as potential antioxidants and biometal chelators. Especially, 4u displayed a good inhibition of AChE (IC50 value of 193 nM for eeAChE and 273 nM for hAChE), strong inhibition of BuChE (IC50 value of 73 nM for eqBuChE and 56 nM for hBuChE), moderate inhibition of Aβ aggregation (56.3% at 20 μM) and good antioxidant activity (3.28 trolox equivalent by ORAC assay). Molecular modeling studies in combination with kinetic analysis revealed that 4u was a mixed-type inhibitor, binding simultaneously to catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4u could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). Taken together, these results strongly indicated the hybridization approach is an efficient strategy to identify novel scaffolds with desired bioactivities, and further optimization of 4u may be helpful to develop more potent lead compound for AD treatment.  相似文献   

20.
A series of pterostilbene β-amino alcohol derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease (AD). In vitro assays demonstrated that most of the derivatives were selective acetylacholinesterase (AChE) inhibitors with moderate multifunctional properties. Among them, compound 5f exhibited the best inhibitory activity for EeAChE (IC50 = 24.04 μM), that was better than pterostilbene under our experimental condition. In addition, compound 5f displayed reasonable antioxidant activity and could confer significant neuroprotective effect against H2O2-induced PC-12 cell injury. Moreover, 5f also showed self-induced Aβ1-42 aggregation inhibitory potency and displayed high BBB permeability in vitro. These multifunctional properties highlight 5f as a promising candidate for further studies directed to the development of novel drugs against AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号