首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.

Background

The p28 peptide, derived from the blue copper protein Azurin, exerts an anticancer action due to interaction with the tumor suppressor p53, likely interfering with its down-regulators. Knowledge of both the kinetics and topological details of the interaction, could greatly help to understand the peptide anticancer mechanism.

Methods

Fluorescence and Förster resonance energy transfer (FRET) were used to determine both the binding affinity and the distance between the lone tryptophan (FRET donor) of DNA Binding Domain (DBD) of p53 and the Iaedens dye (FRET acceptor) bound to the p28 peptide. Docking, Molecular Dynamic simulations and free energy binding calculations were used to single out the best complex model, compatible with the distance measured by FRET.

Results

Tryptophan fluorescence quenching provided a 105?M?1 binding affinity for the complex. Both FRET donor fluorescence quenching and acceptor enhancement are consistent with a donor-acceptor distance of about 2.6?nm. Docking and molecular dynamics simulations allowed us to select the best complex, enlightening the contact regions between p28 and DBD.

Conclusions

p28 binds to DBD partially engaging the L1 loop, at the same region of the p53 down-regulator COP1, leaving however the DNA binding site available for functional interactions.

General significance

Elucidation of the DBD-p28 complex gets insights into the functional role of p28 in regulating the p53 anticancer activity, also offering new perspectives to design new drugs able to protect the p53 anticancer function.  相似文献   

2.
3.
研究发现,取自蓝铜蛋白azurin的一段多肽p28能够进入癌细胞,结合到肿瘤抑制因子p53的DNA结合域上,进而增加p53的抗癌能力.本工作中,通过拉伸分子动力学方法,在原子尺度上研究了p28-p53 DBD复合物的解离过程.分析结果显示复合物的解离过程遵循着一定的分离顺序.对解离力的分析以及对沿着解离路径的不可逆做功的计算,使我们能够从复合物的能量地貌中提取有用的信息,而这些信息也决定了复合物的解离过程.  相似文献   

4.
Azurin, a bacterial protein, can be internalized in cancer cells and induce apoptosis. Such anticancer effect is coupled to the formation of a complex with the tumour‐suppressor p53. The mechanism by which azurin stabilizes p53 and the binding sites of their complex are still under investigation. It is also known that the predominant mechanism for p53 down‐regulation implies its association to Mdm2, the main ubiquitin ligase affecting its stability. However, the p53/Mdm2 interaction, occurring at the level of both their N‐terminal domains, has been characterized so far by experiments involving only partial domains of these proteins. The relevance of the p53/Mdm2 complex as a possible target of the anticancer therapies requires a deeper study of this complex as made up of the two entire proteins. Moreover, the apparent antagonist action of azurin against Mdm2, with respect of p53 regulation, might suggest the possibility that azurin binds p53 at the same site of Mdm2, preventing in such a way p53 and Mdm2 from association and thus p53 from degradation. By following the interaction of the two entire proteins by atomic force spectroscopy, we have assessed the formation of a specific complex between p53 and Mdm2. We found for it a binding strength and a dissociation rate constant typical of dynamical protein–protein interactions and we observed that azurin, even if capable to bind p53, does not compete with Mdm2 for the same binding site on p53. The formation of the p53/Mdm2/azurin ternary complex might suggest an alternative anti‐cancer mechanism adopted by azurin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
MDM2 binds to the tumor suppressor protein p53 and regulates the level of p53 in cells. Although it is possible to prepare a small amount of the region of MDM2 that binds to p53, the expression level of this fragment of MDM2 is relatively low, limiting the studies involving this protein. Here, we describe a construct for the optimized bacterial expression and purification of the MDM2 p53 binding domain. We found that the expression level of the soluble MDM2 p53 binding domain in bacteria was increased dramatically by fusing it to its interaction partner, the p53 transactivation peptide. Attachment of the p53 transactivation peptide (residues 17-29) to the N-terminus of MDM2 resulted in a more than 200-fold increase of soluble protein expression of the p53 binding domain in bacteria. To obtain the final MDM2 p53 binding domain (residues 5-109) we inserted a tobacco etch virus protease recognition site between the P53 peptide and the MDM2 p53 binding domain. To weaken the protein/peptide interaction and facilitate the separation of the protein from the complex, we introduced a point mutation of one of the key interaction residues (F19A or W23A) in the p53 peptide. The advantages of our new construct are high yield and easy purification of the MDM2 protein.  相似文献   

6.
The tumor suppressor p53 interacts with the redox copper protein Azurin (AZ) forming a complex which is of some relevance in biomedicine and cancer therapy. To obtain information on the spatial organization of this complex when it is immobilized on a substrate, we have used tapping mode‐atomic force microscopy (TM‐AFM) imaging combined with computational docking. The vertical dimension and the bearing volume of the DNA binding domain (DBD) of p53, anchored to functionalized gold substrate through exposed lysine residues, alone and after deposing AZ, have been measured by TM‐AFM. By a computational docking approach, a three‐dimensional model for the DBD of p53, before and after addition of AZ, have been predicted. Then we have calculated the possible arrangements of these biomolecular systems on gold substrate by finding a good agreement with the related experimental distribution of the height. The potentiality of the approach combining TM‐AFM imaging and computational docking for the study of biomolecular complexes immobilized on substrates is briefly discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The physiologically active form of p53 consists of a tetramer of four identical 393-amino-acid subunits associated via their tetramerization domains (TDs; residues 325-355). One in two human tumors contains a point mutation in the DNA binding domain (DBD) of p53 (residues 94-312). Most existing studies on the effects of these mutations on p53 structure and function have been carried out on the isolated DBD fragment, which is monomeric. Recent structural evidence, however, suggests that DBDs may interact with each other in full-length tetrameric forms of p53. Here, we investigate the effects of tumorigenic DBD mutations on the folding of p53 in its tetrameric form. We employ the construct consisting of DBD and TD (amino acids 94-360). We characterize the stability and conformational state of the tumorigenic DBD mutants R248Q, R249S, and R282Q using equilibrium denaturation and functional assays. Destabilizing mutations cause DBD to misfold when it is part of the p53 tetramer, but not when it is monomeric. This conformation is populated under moderately destabilizing conditions (10 °C in 2 M urea, and at physiological temperature in the absence of denaturant). Under those same conditions, it is not present in the isolated DBD fragment or in the presence of the TD mutation L344P, which abolishes tetramerization. Misfolding appears to involve intramolecular DBD-DBD association within a single tetrameric molecule. This association is promoted by destabilization of DBD (caused by mutation or elevated temperature) and by the high local DBD concentration enforced by tetramerization of TD. Disrupting the nonnative DBD-DBD interaction or transiently inhibiting tetramerization and allowing p53 to fold as a monomer may be potential strategies for pharmacological intervention in cancer.  相似文献   

8.
Azurin is bacterial protein, which was been reported to promote cancer cell death in vitro. The interaction of azurin and p53 is important for the cytotoxic effect of azurin towards cancer cells. In this study, it was found that nucleic acids mediated the interaction of azurin and the C-terminal domain of p53 (residues 352-393). The results provide novel insight into the interaction, and raising the possibility that the allosteric regulation of C-terminus of p53 by nucleic acids play an important role in the interaction of p53 with azurin. Meanwhile an elongated expressed product of azurin was cloned and purified, which was found to have stronger interaction with C-terminal domain of p53. Cytotoxicity studies showed that the cytotoxic effect of this elongated expressed product of azurin was stronger than wild-type azurin. The difference found in the cytotoxic effect of azurin with various sequence may provide valuable insight for finding more effective anticancer peptides.  相似文献   

9.
BackgroundMutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in > 50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.MethodsMolecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.ResultsWe show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.ConclusionsThese results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.General significanceRaman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.  相似文献   

10.
Molecular interaction between p53 tumor suppressor and the copper protein azurin (AZ) has been demonstrated to enhance p53 stability and hence antitumoral function, opening new perspectives in cancer treatment. While some experimental work has provided evidence for AZ binding to p53, no crystal structure for the p53-AZ complex was solved thus far. In this work the association between AZ and the p53 DNA-binding domain (DBD) was investigated by computational methods. Using a combination of rigid-body protein docking, experimental mutagenesis information, and cluster analysis 10 main p53 DBD-AZ binding modes were generated. The resulting structures were further characterized by molecular dynamics (MD) simulations and free energy calculations. We found that the highest scored docking conformation for the p53 DBD-AZ complex also yielded the most favorable free energy value. This best three-dimensional model for the complex was validated by using a computational mutagenesis strategy. In this structure AZ binds to the flexible L(1) and s(7)-s(8) loops of the p53 DBD and stabilizes them through protein-protein tight packing interactions, resulting in high degree of both surface matching and electrostatic complementarity.  相似文献   

11.
12.
The structured DNA‐binding domain (DBD) of p53 is a well‐known client protein of the chaperone Hsp90. The p53 DBD contains a single zinc ion, coordinated by the side chains of Cys176, His179, Cys238, and Cys242; zinc coordination plays a structural role to stabilize the DBD and is required for its DNA binding. The ambiguous nature of the p53‐Hsp90 interaction, together with the stabilizing role of the zinc in the structure of the DBD, prompted us to examine the interaction of Hsp90 with zinc‐free p53 DBD. NMR spectroscopy and native gel electrophoresis did not show any apparent preference for the interaction of the destabilized zinc‐free form of p53 DBD with Hsp90. Intriguingly, however, at lower protein concentrations, closer to physiological concentrations, the addition of Hsp90, but not other chaperones such as Hsp70, Hsp40, p23, and HOP, appears to slow or prevent the aggregation of zinc‐free p53 DBD. This result suggests that part of the function of the Hsp90‐p53 interaction in the cell may be to stabilize the apoprotein in the absence of zinc.  相似文献   

13.
14.
Mitochondrial permeability transition pore (mPTP) plays crucial roles in cell death in a variety of diseases, including ischemia/reperfusion injury in heart attack and stroke, neurodegenerative conditions, and cancer. To date, cyclophilin D is the only confirmed component of mPTP. Under stress, p53 can translocate into mitochondria and interact with CypD, triggering necrosis and cell growth arrest. However, the molecular details of p53/CypD interaction are still poorly understood. Previously, several studies reported that p53 interacts with CypD through its DNA-binding domain (DBD). However, using surface plasmon resonance (SPR), we found that both NTD-DBD, NTD and NTD (1–70) bind to CypD at ~μM KD. In solution NMR, NTD binds CypD with μM affinity and mimics the pattern of FLp53 binding in chemical shift perturbation. In contrast, neither solution NMR nor fluorescence anisotropy detected DBD binding to CypD. Thus, instead of DBD, NTD is the major CypD binding site on p53. NMR titration and MD simulation revealed that NTD binds CypD with broad and dynamic interfaces dominated by electrostatic interactions. NTD 20–70 was further identified as the minimal binding region for CypD interaction, and two NTD fragments, D1 (residues 22–44) and D2 (58–70), can each bind CypD with mM affinity. Our detailed biophysical characterization of the dynamic interface between NTD and CypD provides novel insights on the p53-dependent mPTP opening and drug discovery targeting NTD/CypD interface in diseases.  相似文献   

15.
16.
The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development.  相似文献   

17.
The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development.  相似文献   

18.
19.
We have used NMR to study the effects of peptide binding on the N-terminal p53-binding domain of human MDM2 (residues 25-109). There were changes in HSQC-chemical shifts throughout the domain on binding four different p53-derived peptide ligands that were significantly large to be indicative of global conformational changes. Large changes in chemical shift were observed in two main regions: the peptide-binding cleft that directly binds the p53 ligands; and the hinge regions connecting the beta-sheet and alpha-helical structures that form the binding cleft. These conformational changes reflect the adaptation of the cleft on binding peptide ligands that differ in length and amino acid composition. Different ligands may induce different conformational transitions in MDM2 that could be responsible for its function. The dynamic nature of MDM2 might be important in the design of anti-cancer drugs that are targeted to its p53-binding site.  相似文献   

20.
p53 is a human tumour suppressor which regulates multiple cellular processes, including cell growth, genomic stability and cell death. Recent works have demonstrated the bacterial redox protein azurin to enter cancer cells and induce apoptosis through p53 stabilization, resulting in a tumour growth regression. Azurin has been shown to bind p53 although many details of the complex formed by these two proteins are still poorly characterized. Here, we get insight into the kinetics of this complex formation, by exploring the interaction between p53 and azurin in their environment by single molecule force spectroscopy. To this aim, azurin has been linked to the atomic force microscope tip, whereas p53 has been immobilized onto a gold substrate. Therefore, by performing force-distance cycles we have detected specific recognition events between p53 and azurin, displaying unbinding forces of around 70 pN for an applied loading rate of 3 nN s(-1). The specificity of these events has been assessed by the significant reduction of their frequency observed after blocking the p53 sample by an azurin solution. Moreover, by measuring the rupture force as a function of the loading rate we have determined the dissociation rate constant of this complex to be approximately 0.1 s(-1). Our findings are here discussed in connection with results obtained in bulk experiments, with the aim of clarifying some molecular details of the p53-azurin complex that may help designing new anticancer strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号