首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.  相似文献   

2.
Dietary intake of omega-3 fatty acids has been positively correlated with cardiovascular and neuropsychiatric health in several studies. The high seafood intake by the Japanese and Greenland Inuit has resulted in low ratios of the omega-6 fatty acid arachidonic acid (AA, 20:4n-6) to eicosapentaenoic acid (EPA, 20:5n-3), with the Japanese showing AA:EPA ratios of approximately 1.7 and the Greenland Eskimos showing ratios of approximately 0.14. It was the objective of this study to determine the effect of supplementation with high doses (60 g) of flax and fish oils on the blood phospholipid (PL) fatty acid status, and AA/EPA ratio of individuals with Attention Deficit Hyperactivity Disorder (ADHD), commonly associated with decreased blood omega-3 fatty acid levels. Thirty adults with ADHD were randomized to 12 weeks of supplementation with olive oil (< 1% omega-3 fatty acids), flax oil (source of alpha-linolenic acid; 18:3n-3; alpha-LNA) or fish oil (source of EPA and docosahexaenoic acid; 22:6n-3; DHA). Serum PL fatty acid levels were determined at baseline and at 12 weeks. Flax oil supplementation resulted in an increase in alpha-LNA and a slight decrease in the ratio of AA/EPA, while fish oil supplementation resulted in increases in EPA, DHA and total omega-3 fatty acids and a decrease in the AA/EPA ratio to values seen in the Japanese population. These data suggest that in order to increase levels of EPA and DHA in adults with ADHD, and decrease the AA/EPA ratio to levels seen in high fish consuming populations, high dose fish oil may be preferable to high dose flax oil. Future study is warranted to determine whether correction of low levels of long-chain omega-3 fatty acids is of therapeutic benefit in this population.  相似文献   

3.
Omega-3 fatty acids from fish oils and cardiovascular disease   总被引:10,自引:0,他引:10  
Fish and fish oils contain the omega-3 fatty acids known as eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Epidemiological studies have shown an inverse relation between the dietary consumption of fish containing EPA/DHA and mortality from coronary heart disease. These relationships have been substantiated from blood measures of omega-3 fatty acids including DHA as a physiological biomarker for omega-3 fatty acid status. Controlled intervention trials with fish oil supplements enriched in EPA/DHA have shown their potential to reduce mortality in post-myocardial infarction patients with a substantial reduction in the risk of sudden cardiac death. The cardioprotective effects of EPA/DHA are widespread, appear to act independently of blood cholesterol reduction, and are mediated by diverse mechanisms. Their overall effects include anti-arrhythmic, blood triglyceride-lowering, anti-thrombotic, anti-inflammatory, endothelial relaxation, plus others. Current dietary intakes of EPA/DHA in North America and elsewhere are well below those recommended by the American Heart Association for the management of patients with coronary heart disease. (Mol Cell Biochem 263: 217–225, 2004)  相似文献   

4.
BACKGROUND: Benefits of omega-3 fatty acids in perinatal women are well documented, although fish intake has declined among perinatal women. OBJECTIVE: To determine the tolerability of omega-3 fatty acid supplementation in perinatal women. DESIGN: Pregnant and postpartum women with major depressive disorder (MDD) entered an 8-week double-blind, placebo-controlled trial of omega-3 fatty acids. Four capsules provided 1.84 g/day of eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA), or matching placebo (corn oil with 1% fish oil to maintain blind). Tolerability was assessed by clinician interview biweekly. RESULTS: Fifty-nine women enrolled. Thirteen (22%) reported mainly transient side effects including dizziness, diarrhea, nausea, burping, heartburn/reflux, difficulty swallowing capsules, unpleasant breath/bad taste or feeling tired. The most common were unpleasant breath/bad taste and heartburn/reflux. Six reporting side effects received omega-3 fatty acids; seven received placebo. Neither pregnant nor postpartum women discontinued due to intolerability. CONCLUSIONS: Omega-3 fatty acid supplements were well tolerated by perinatal women.  相似文献   

5.
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.  相似文献   

6.
Epidemiological evidence from Greenland Eskimos and Japanese fishing villages suggests that eating fish oil and marine animals can prevent coronary heart disease. Dietary studies from various laboratories have similarly indicated that regular fish oil intake affects several humoral and cellular factors involved in atherogenesis and may prevent atherosclerosis, arrhythmia, thrombosis, cardiac hypertrophy and sudden cardiac death. The beneficial effects of fish oil are attributed to their n-3 polyunsaturated fatty acid (PUFA; also known as omega-3 fatty acids) content, particularly eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Dietary supplementation of DHA and EPA influences the fatty acid composition of plasma phospholipids that, in turn, may affect cardiac cell functions in vivo. Recent studies have demonstrated that long-chain omega-3 fatty acids may exert beneficial effects by affecting a wide variety of cellular signaling mechanisms. Pathways involved in calcium homeostasis in the heart may be of particular importance. L-type calcium channels, the Na+-Ca2+ exchanger and mobilization of calcium from intracellular stores are the most obvious key signaling pathways affecting the cardiovascular system; however, recent studies now suggest that other signaling pathways involving activation of phospholipases, synthesis of eicosanoids, regulation of receptor-associated enzymes and protein kinases also play very important roles in mediating n-3 PUFA effects on cardiovascular health. This review is therefore focused on the molecular targets and signaling pathways that are regulated by n-3 PUFAs in relation to their cardioprotective effects.  相似文献   

7.
Polyunsaturated fatty acids have been reported to enhance the cytotoxic activity of several anticancer drugs. In the present study, we observed that doxorubicin chemosensitization of breast cancer cell lines by docosahexaenoic acid (DHA, a long-chain omega-3 polyunsaturated fatty acid) was cell-line selective, affecting MDA-MB-231 and MCF-7 dox (a doxorubicin-resistant cell line) but not the parental MCF-7 cell line. DHA supplementation led to an increase in membrane phospholipid DHA level, but did not induce changes in intracellular [(14)C]doxorubicin accumulation. In MDA-MB-231, doxorubicin efficacy enhancement by DHA was linked to an increase in malondialdehyde level, a final product of lipid peroxidation. DHA elicited by itself a 3.7-fold malondialdehyde level increase, additive to that induced by doxorubicin. Addition of doxorubicin to DHA further increased the glutathione level, indicative of the generation of an oxidative stress. In contrast to MDA-MB-231, doxorubicin did not increase the malondialdehyde level in MCF-7, although DHA induced lipid peroxidation. Therefore in MCF-7, lipid peroxidation induced by DHA itself was not sufficient to trigger an oxidative stress and to subsequently increase sensitivity to doxorubicin. These data indicate that the differential effect of DHA among cells on drug toxicity results from a differential oxidative response to doxorubicin. Chemosensitization through fatty acids appears as a new promising adjuvant therapeutic paradigm, since omega-3 fatty acids are physiological molecules found in food and are nontoxic in vivo.  相似文献   

8.
9.
A commercial lipase preparation from Rhizopus niveus was used to concentrate the omega-3 fatty acid, docosahexaenoic acid (DHA) component in fish oil. The DHA content of cod-liver oil was 9.64% (w/w) of total fatty acids. Enzymatic digestion conditions were established which produced a DHA content in the monoglycerides fraction of 29.17% (w/w) of total fatty acid, triglyceride, and diglyceride components were 5.72, 9.95, and 15316%, respectively.  相似文献   

10.

Background

The present study sought to further investigate the in vitro and in vivo anticancer effects of a representative omega-3 fatty acid, docosahexaenoic acid (DHA), with a focus on assessing the induction of oxidative stress and apoptosis as an important mechanism for its anticancer actions.

Methodology/Principal Findings

In vitro studies showed that DHA strongly reduces the viability and DNA synthesis of MCF-7 human breast cancer cells in culture, and also promotes cell death via apoptosis. Mechanistically, accumulation of reactive oxygen species and activation of caspase 8 contribute critically to the induction of apoptotic cell death. Co-presence of antioxidants or selective inhibition or knockdown of caspase 8 each effectively abrogates the cytotoxic effect of DHA. Using athymic nude mice as an in vivo model, we found that feeding animals the 5% fish oil-supplemented diet for 6 weeks significantly reduces the growth of MCF-7 human breast cancer cells in vivo through inhibition of cancer cell proliferation as well as promotion of cell death. Using 3-nitrotyrosine as a parameter, we confirmed that the fish oil-supplemented diet significantly increases oxidative stress in tumor cells in vivo. Analysis of fatty acid content in plasma and tissues showed that feeding animals a 5% fish oil diet increases the levels of DHA and eicosapentaenoic acid in both normal and tumorous mammary tissues by 329% and 300%, respectively.

Conclusions/Significance

DHA can strongly induce apoptosis in human MCF-7 breast cancer cells both in vitro and in vivo. The induction of apoptosis in these cells is selectively mediated via caspase 8 activation. These observations call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of human breast cancer.  相似文献   

11.
Increased intake of fish oil rich in the omega-3 fatty acids eicosapentaenoic acid (EPA, C20:5 omega-3) and docosahexaenoic acid (DHA, C22:6 omega-3) reduces the incidence of human disorders such as atherosclerotic cardiovascular disease. However, mechanisms that contribute to the beneficial effects of fish oil consumption are poorly understood. Mounting evidence suggests that oxidation products of EPA and DHA may be responsible, at least in part, for these benefits. Previously, we have defined the free radical-induced oxidation of arachidonic acid in vitro and in vivo and have proposed a unified mechanism for its peroxidation. We hypothesize that the oxidation of EPA can be rationally defined but would be predicted to be significantly more complex than arachidonate because of the fact that EPA contains an addition carbon-carbon double bond. Herein, we present, for the first time, a unified mechanism for the peroxidation of EPA. Novel oxidation products were identified employing state-of-the-art mass spectrometric techniques including Ag(+) coordination ionspray and atmospheric pressure chemical ionization mass spectrometry. Predicted compounds detected both in vitro and in vivo included monocylic peroxides, serial cyclic peroxides, bicyclic endoperoxides, and dioxolane-endoperoxides. Systematic study of the peroxidation of EPA provides the basis to examine the role of specific oxidation products as mediators of the biological effects of fish oil.  相似文献   

12.
Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA) are critical for infant and childhood brain development, but levels of the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are often low in the Western diet. Increasing evidence from both epidemiological and intervention studies, reviewed here, indicates that DHA supplementation, during pregnancy, lactation, or childhood plays an important role in childhood neurodevelopment. Arachidonic acid (ARA) is also important for infant growth and development. Several studies have demonstrated positive associations between blood DHA levels and improvements on tests of cognitive and visual function in healthy children. Controlled trials also have shown that supplementation with DHA and EPA may help in the management of childhood psychiatric disorders, and improve visual and motor functions in children with phenylketonuria. In all studies, DHA and EPA supplementation is typically well tolerated. Further research is needed to determine optimal doses for efficacy at different developmental ages. The potential long-term benefits of early LCPUFA supplementation also require consideration.  相似文献   

13.
Previous studies suggest that the n-3 polyunsaturated fatty acids (PUFAs) eicosapenteinoic acid (EPA) and docosahexaenoic acid (DHA), constituents of fish oil, exert chemopreventive activity in colon cancer. One of the mechanisms involved is the facilitation of apoptosis. While a pro-apoptotic potential of n-3 PUFAs has been suggested, it is still unclear whether additional consumption of fish will also lead to comparable results. The aim of this study was to assess EPA- and DHA-mediated effects on endpoints of apoptosis and to use a novel biomarker-approach to measure modulation of apoptosis by consumption of fish. LT97 human colon adenoma and HT29 human colon adenocarcinoma cells were used to investigate modulation of apoptosis by EPA, DHA or linoleic acid (LA) using a set of endpoints, namely phosphatidylserine staining with Annexin-V (flow cytometry), Bcl-2 expression (Real-time RT–PCR), and Bid, caspase 3, 8 and 9 expression as well as PARP cleavage (Western Blot). Furthermore, faecal water (FW) of volunteers (n = 89) from a human trial intervening with fish was used to investigate changes in apoptosis by flow cytometry. DHA was more effective at inducing apoptosis than EPA. LT97 cells were more prone to DHA and EPA induced apoptosis than HT29 cells. Treatment of LT97 cells with FW from volunteers consuming fish did not result in any changes in apoptosis. Taken together, our results show that adenoma cells are highly susceptible to n-3 PUFA-induced apoptosis. By using a biomarker-approach (FW) to measure apoptosis-induction ex vivo no change in apoptosis after additional fish consumption was detectable.  相似文献   

14.
Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug–excipient relationships at the molecular level.  相似文献   

15.
ABSTRACT: Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.  相似文献   

16.
Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood–brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD.  相似文献   

17.
Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives (ARTs), and it is an effective clinical drug widely used to treat malaria. Recently, the anticancer activity of DHA has attracted increasing attention. Nevertheless, there is no systematic summary on the anticancer effects of DHA. Notably, studies have shown that DHA exerts anticancer effects through various molecular mechanisms, such as inhibiting proliferation, inducing apoptosis, inhibiting tumor metastasis and angiogenesis, promoting immune function, inducing autophagy and endoplasmic reticulum (ER) stress. In this review, we comprehensively summarized the latest progress regarding the anticancer activities of DHA in cancer. Importantly, the underlying anticancer molecular mechanisms and pharmacological effects of DHA in vitro and in vivo are the focus of our attention. Interestingly, new methods to improve the solubility and bioavailability of DHA are discussed, which greatly enhance its anticancer efficacy. Remarkably, DHA has synergistic anti-tumor effects with a variety of clinical drugs, and preclinical and clinical studies provide stronger evidence of its anticancer potential. Moreover, this article also gives suggestions for further research on the anticancer effects of DHA. Thus, we hope to provide a strong theoretical support for DHA as an anticancer drug.  相似文献   

18.
Previous research has shown that dietary docosahexaenoic acid (DHA) attenuates the development of high blood pressure in young spontaneously hypertensive rats (SHR). The purpose of this study was to investigate the effects of dietary DHA on organ and vascular fatty acid composition in SHR. Given the important structural and functional role of fatty acids in cell membranes, alterations in fatty acid composition may contribute to the antihypertensive effect of DHA. SHR were fed a purified diet containing either a corn/soybean oil mixture (CSO, control) or a DHA-enriched oil for 6 weeks. The DHA diet markedly increased the levels of DHA in the aorta, renal artery, plasma, liver, heart, kidney, and lung by 5-, 15-, 7-, 6-, 3.8-, 3.5-, and 8.8-fold (P<0.001), respectively. The levels of eicosapentaenoic acid were also increased while there was a concomitant reduction in arachidonic and adrenic acids. Therefore, dietary DHA increases the incorporation of omega-3 polyunsaturated fatty acids in specific organs and vascular tissue in SHR at the expense of omega-6 polyunsaturated fatty acids.  相似文献   

19.
The objective was to determine the effect of long-term dietary supplementation of two types of fish oil on lipid composition and steroidogenesis in adult pig testis. Twenty-four Duroc boars, aged 204.5 ± 9.4 d (body weight 128.1 ± 16.7 kg) received daily 2.5 kg of an iso-caloric basal diet supplemented with: 1) 62 g of hydrogenated animal fat (AF); 2) 60 g of menhaden oil (MO) containing 16% of eicosapentaenoic acid (EPA) and 18% of docosahexaenoic acid (DHA); or 3) 60 g of tuna oil (TO) containing 7% of EPA and 33% of DHA. After these diets were consumed for 7 mo, testicular hormones, phospholipid content, and fatty acid composition of individual phospholipids in testis were determined. Body and reproductive organ weights were not significantly affected by dietary treatments. Testicular tissue from boars fed a TO diet, followed by those receiving MO and AF diets, had the lowest level of phosphatidylethanolamine (TO < MO < AF; P < 0.01) but the highest sphingomyelin (TO > MO > AF; P < 0.01). For each phospholipid, boars fed either the MO or TO diet had increased total omega-3 fatty acids, particularly DHA (P < 0.01), by reciprocal replacement of total omega-6 fatty acids (20:4n-6, 22:5n-6). The MO diet increased EPA more than the other diets. Testicular concentrations of testosterone and estradiol were lower in boars fed a TO diet than a MO diet (P < 0.02). In conclusion, long-term dietary supplementation of fish oil, regardless of the EPA/DHA ratio, modified the fatty acid compositions in testis and affected steroid production of healthy adult boars, which may represent a promising models for future studies on fertility.  相似文献   

20.
Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号