首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteomics is the study of the protein complement of a genome and employs a number of newly emerging tools. One such tool is chemical proteomics, which is a branch of proteomics devoted to the exploration of protein function using both in vitro and in vivo chemical probes. Chemical proteomics aims to define protein function and mechanism at the level of directly observed protein–ligand interactions, whereas chemical genomics aims to define the biological role of a protein using chemical knockouts and observing phenotypic changes. Chemical proteomics is therefore traditional mechanistic biochemistry performed in a systems-based manner, using either activity- or affinity-based probes that target proteins related by chemical reactivities or by binding site shape/properties, respectively. Systems are groups of proteins related by metabolic pathway, regulatory pathway or binding to the same ligand. Studies can be based on two main types of proteome samples: pooled proteins (1 mixture of N proteins) or isolated proteins in a given system and studied in parallel (N single protein samples). Although the field of chemical proteomics originated with the use of covalent labeling strategies such as isotope-coded affinity tagging, it is expanding to include chemical probes that bind proteins noncovalently, and to include more methods for observing protein–ligand interactions. This review presents an emerging role for nuclear magnetic resonance spectroscopy in chemical proteomics, both in vitro and in vivo. Applications include: functional proteomics using cofactor fingerprinting to assign proteins to gene families; gene family-based structural characterizations of protein–ligand complexes; gene family-focused design of drug leads; and chemical proteomic probes using nuclear magnetic resonance SOLVE and studies of protein–ligand interactions in vivo.  相似文献   

2.
Removal of azo dye effluents generated by textile photography industries is a main issue in wastewater treatment. Enzymatic treatment of dyes appears to be one of the most efficient processes for their degradation. The elucidation of degradation pathways is of special interest considering health and environmental priorities. Ex situ nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization (ESI)-ion trap mass spectrometry performed directly on incubation medium have been used for the first time to follow kinetics of sulfonated azo dye Orange II enzymatic degradation. Nine transformation products were identified using these complementary analyses performed ex situ without any prior treatment. Three types of cleavage are proposed for the degradation pathway: (i) a symmetrical splitting of the azo linkage that leads to the formation of 4-aminobenzenesulfonate (and 1-amino-2-naphthol, not detected); (ii) an asymmetrical cleavage on the naphthalene side that generates 1,2-naphthoquinone and 4-diazoniumbenzenesulfonate as products, with the latter one being transformed into 4-hydroxybenzensulfonate; and (iii) a third degradation pathway that leads to 2-naphthol and 4-hydroxybenzenesulfonate. Moreover, three other intermediates have been identified. This study, which constitutes the first concomitant use of (1)H NMR spectroscopy and ESI-ion trap mass spectrometry in this field, illustrates the indubitable interest of the ex situ approach.  相似文献   

3.
400 MHz1H-NMR and 100 MHz13C-NMR spectra of a neutral octasaccharide and of a disialyldecasaccharide of theN-acetyllactosamine type were studied. The resonance assignments were made by combining multiple-relayed coherence-transfer chemical-shift-correlated spectroscopy (multiple-RELAY-COSY) and1H/13C-shift correlated 2D experiments. The complete analysis of the1H and13C spectra was performed.  相似文献   

4.
5.
The heat-stable enterotoxin b (STb) is secreted by enterotoxigenic Escherichia coli that cause secretory diarrhea in animals and humans. It is a 48-amino acid peptide containing two disulfide bridges, between residues 10 and 48 and 21 and 36, which are crucial for its biological activity. Here, we report the solution structure of STb determined by two- and three-dimensional NMR methods. Approximate interproton distances derived from NOE data were used to construct structures of STb using distance-geometry and simulated annealing procedures. The NMR-derived structure shows that STb is helical between residues 10 and 22 and residues 38 and 44. The helical structure in the region 10-22 is amphipathic and exposes several polar residues to the solvent, some of which have been shown to be important in determining the toxicity of STb. The hydrophobic residues on the opposite face of this helix make contacts with the hydrophobic residues of the C-terminal helix. The loop region between residues 21 and 36 has another cluster of hydrophobic residues and exposes Arg 29 and Asp 30, which have been shown to be important for intestinal secretory activity. CD studies show that reduction of disulfide bridges results in a dramatic loss of structure, which correlates with loss of function. Reduced STb adopts a predominantly random-coil conformation. Chromatographic measurements of concentrations of native, fully reduced, and single-disulfide species in equilibrium mixtures of STb in redox buffers indicate that the formation of the two disulfide bonds in STb is only moderately cooperative. Similar measurements in the presence of 8 M urea suggest that the native secondary structure significantly stabilizes the disulfide bonds.  相似文献   

6.
Nuclear magnetic resonance is used to investigate the backbone dynamics in 6-phosphogluconolactonase from Trypanosoma brucei (Tb6PGL) with (holo-) and without (apo-) 6-phosphogluconic acid as ligand. Relaxation data were analyzed using the model-free approach and reduced spectral density mapping. Comparison of predictions, based on 77 ns molecular dynamics simulations, with the observed relaxation rates gives insight into dynamical properties of the protein and their alteration on ligand binding. Data indicate dynamics changes in the vicinity of the binding site. More interesting is the presence of perturbations located in remote regions of this well-structured globular protein in which no large-amplitude motions are involved. This suggests that delocalized changes in dynamics that occur upon binding could be a general feature of protein-target interactions.  相似文献   

7.
Abstract

Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family proteins. Its amplification is one of the most frequent genetic aberrations found in human cancers. Pyridoclax, a promising BH3 mimetic inhibitor, interacts directly with Mcl-1 and induces massive apoptosis at a concentration of 15?µM in combination with anti-Bcl-xL strategies in chemo-resistant ovarian cancer cell lines. In this study, a combined experimental and theoretical approach was used to investigate the binding mode of Pyridoclax to Mcl-1. The representative poses generated from dynamics simulations compared with NMR data revealed: (i) Pyridoclax bound to P1 and P2 pockets of Mcl-1 BH3 binding groove through its styryl and methyl groups establishing mainly hydrophobic contacts, (ii) one of the ending pyridines interacts through electrostatic interaction with K234 side chain, a negatively charged residue present only in this position in Mcl-1.

Communicated by Ramaswamy H. Sarma  相似文献   

8.
Several 3-dehydro- (or 3-oxo-) ecdysteroids have been prepared by enzymatic and/or chemical means. Methods for their purification using various high-performance liquid chromatography systems are described. Proton and carbon nuclear magnetic resonance analyses show that 3-dehydroecdysteroids when dissolved in water or methanol (but not in chloroform) present a temperature-dependent equilibrium between two forms. The possible structure of these two forms is discussed.  相似文献   

9.
M J Bogusky  G C Leo  S J Opella 《Proteins》1988,4(2):123-130
Solid-state and solution 15N nuclear magnetic resonance experiments on uniformly and specifically 15N labeled coat protein in phospholipid bilayers and in detergent micelles are used to describe the dynamics of the membrane-bound form of the protein. The residues in the N- and C-terminal portions of the coat protein in both phospholipid bilayers and in detergent micelles are mobile, while those in the hydrophobic midsection are immobile. There is evidence for a gradient of mobility in the C-terminal region of the coat protein in micelles; at 25 degrees C only the last two residues are mobile on the 10(9)-Hz timescale, while the last six to eight residues appear to be mobile on slower timescales and highly mobile at higher temperatures. Since all of the C-terminal residues are immobile in the virus particles, the mobility of these residues in the membrane-bound form of the protein may be important for the formation of protein-DNA interactions in the assembly process.  相似文献   

10.
While many compounds have been reported to change in laboratory based drought-stress experiments, little is known about how such compounds change, and are significant, under field conditions. The Pisum sativum L. (pea) leaf metabolome has been profiled, using 1D and 2D NMR spectroscopy, to monitor the changes induced by drought-stress, under both glasshouse and simulated field conditions. Significant changes in resonances were attributed to a range of compounds, identified as both primary and secondary metabolites, highlighting metabolic pathways that are stress-responsive. Importantly, these effects were largely consistent among different experiments with highly diverse conditions. The metabolites that were present at significantly higher concentrations in drought-stressed plants under all growth conditions included proline, valine, threonine, homoserine, myoinositol, γ-aminobutyrate (GABA) and trigonelline (nicotinic acid betaine). Metabolites that were altered in relative amounts in different experiments, but not specifically associated with drought-stress, were also identified. These included glutamate, asparagine and malate, with the last being present at up to 5-fold higher concentrations in plants grown in field experiments. Such changes may be expected to impact both on plant performance and crop end-use. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Imino 15N and 1H resonances of Escherichia coli tRNAlIle were observed in the absence and presence of E coli isoleucyl-tRNA synthetase. Upon complex formation of tRNAlIle with isoleucyl-tRNA synthetase, some imino 15N-1H resonances disappeared, and some others were significantly broadened and/or shifted in the 1H chemical shift, while the others were observed at the same 15H-1H chemical shifts. It was indicated that the binding of tRNAlIle with IleRS affect the following four regions: the anticodon stem, the junction of the acceptor and T stems, the middle of the D stem, and the region where the tertiary base pair connects the T, D, and extra loops. This result is consistent with those of chemical footprinting and site-directed mutagenesis studies. Taken together, these three independent results reveal the recognition mechanism of tRNAlIle by IleRS: IleRS recognizes all the identity determinants distributed throughout the tRNAlIle molecule, which induces changes in the secondary and tertiary structures of tRNAlIle.  相似文献   

12.
P J Kraulis  T A Jones 《Proteins》1987,2(3):188-201
A method to build a three-dimensional protein model from nuclear magnetic resonance (NMR) data using fragments from a data base of crystallographically determined protein structures is presented. The interproton distances derived from the nuclear Overhauser effect (NOE) data are compared to the precalculated distances in the known protein structures. An efficient search algorithm is used, which arranges the distances in matrices akin to a C alpha diagonal distance plot, and compares the NOE distance matrices for short sequential zones of the protein to the data base matrices. After cluster analysis of the fragments found in this way, the structure is built by aligning fragments in overlapping zones. The sequentially long-range NOEs cannot be used in the initial fragments search but are vital to discriminate between several possible combinations of different groups of fragments. The method has been tested on one simulated NOE data set derived from a crystal structure and one experimental NMR data set. The method produces models that have good local structure, but may contain larger global errors. These models can be used as the starting point for further refinement, e.g., by restrained molecular dynamics or interactive graphics.  相似文献   

13.
It is shown that the formation of a carnosine--nucleotide complex (ATP, ADP, AMP) takes place. The stability of the complex mainly depends on: 1) the staking interaction between the heterocyclic rings of carnosine and nucleotides; 2) the electrostatic interaction between the phosphate groups of nucleotide and the positive charged amino group NH3+ of the beta-alanine part of carnosine. The formation of the hydrogen bond between dipeptide COO- group and N1 or N7 of nucleotide is also possible. The complex stability strongly depends on the charge-state of the components and little on the number of the phosphate groups of nucleotide (ATP greater than or equal to ADP greater than AMP).  相似文献   

14.
The hyphenation of enantioselective capillary gas chromatography and mass spectrometry is not always sufficient to distinguish between structural isomers, thus requiring peak identification by NMR spectroscopy. Here the first online coupling of enantioselective capillary gas chromatography with proton nuclear resonance spectroscopy is described for the unfunctionalized chiral alkane 2,4‐dimethylhexane resolved on octakis(6‐O‐methyl‐2,3‐di‐O‐pentyl)‐γ‐cyclodextrin at 60°C. NMR allows constitutional and configurational isomers (diastereomers and enantiomers) to be distinguished. Enantiomers display identical spectra at different retention times, which enable an indirect identification of these unfunctionalized alkanes. The presented method is still at an early development stage, and will require instrumental optimization in the future. Chirality 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Abstract. The nuclear magnetic resonance imaging technique has been used to obtain images of different transverse and vertical sections in groundnut and sunflower seeds. Separate images have been obtained for oil and water components in the seeds. The spatial distribution of oil and water inside the seed has been obtained from the detailed analysis of the images. In the immature groundnut seeds obtained commercially, complementary oil and water distributions have been observed. Attempts have been made to explain these results.  相似文献   

16.
Immunoglobulin G (IgG) plays an important role in clinical diagnosis and therapeutics. Meanwhile, the consensus binding site (CBS) on the Fc domain of IgG is responsible for ligand recognition, especially for Fc‐specific ligands. In this study, molecular simulation methods were used to investigate molecular interactions between the CBS of the Fc domain and seven natural Fc‐specific ligands. The analysis on the binding energy of the Fc–ligand complex indicated that hydrophobic interactions provide the main driving force for the Fc–ligand binding processes. The hot spots on the ligands and Fc were identified with the computational alanine scanning approach. It was found that the residues of tryptophan and tyrosine on the ligands have significant contributions for the Fc–ligand binding, while Met252, Ile253, Asn434, His435, and Tyr436 are the key residues of Fc. Moreover, two binding modes based on tryptophan or tyrosine were summarized and constructed according to the pairwise interaction analysis. Guidelines for the rational design of CBS‐specific ligands with high affinity and specificity were proposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Solid state and solution 51V and 13C NMR studies on four fundamental bisperoxovanadium complexes containing bidendate donor ligands were reported, together with DFT calculations of structural and NMR parameters. The 51V solid-state NMR characterization of the four complexes with [VO(O2)2L]n anion {abbr. bpVL, where L = oxalic acid dianion (ox), pyridine-2-carboxylic acid (pic), bipyridine (bipy), and 1,10-phenanthroline (phen)} show that the ligands have a significant effect on the electric-field gradient tensor, with the quadrupolar coupling constant ranging from 4.0 to 5.8 MHz. The experimental and theoretical results suggest that the vanadium center of bpVpic, bpVphen and bpVbipy in solid state and aqueous solution are all seven-coordinated except that bpVox is six-coordinated in aqueous solution. The steric space hindrance of the organic ligands and the bonding between vanadium with the coordination influences the activity of bpVL complexes.  相似文献   

19.
Glioma is one of the most common types of brain tumors. DNA damage is closely associated with glioma cell apoptosis induced by X-ray irradiation. Alterations of metabolites in glioma can be detected noninvasively by proton nuclear magnetic resonance (1H NMR) spectroscopy. To noninvasively explore the micro mechanism in X-ray irradiation-induced apoptosis, the relationship between metabolites and DNA damage in glioma cells was investigated. Three glioma cell lines (C6, U87 and U251) were randomly designated as control (0 Gy) and treatment groups (1, 5, 10, 15 Gy). After X-ray exposure, each group was separated into four parts: (i) to detect metabolites by 1H NMR spectroscopy; (ii) to make cell colonies; (iii) to detect cell cycle distribution and apoptosis rate by flow cytometry; and (iv) to measure DNA damage by comet assay. The metabolite ratios of lactate/creatine and succinate/creatine decreased (lactate/creatine: C6, 22.17–66.27%; U87, 15.93–44.56%; U251, 26.27–74.48%. succinate/creatine: C6, 14.41–48.35%; U87, 22.03–70.62%; U251, 17.33–60.06%) and choline/creatine increased (C6, 52.22–389.68%; U87, 56.15–82.36%; U251, 31.87–278.62%) in the treatment groups compared with the control group (each P < 0.05), which linearly depended on DNA damage. An increasing dose of X-ray irradiation increased numbers of apoptotic cells (P < 0.01), and the DNA damage parameters were dose-dependent (P < 0.05). The colony-forming rate declined (P < 0.01) and the percentage of cells at G1 stage increased when exposed to 1 Gy X-ray (three cell lines, P < 0.05). Metabolite alterations detected by 1H NMR spectroscopy can be used to determine DNA damage induced by X-ray irradiation. 1H NMR spectroscopy is a noninvasive method to predict DNA damage of glioma cell at the micro level.  相似文献   

20.
Molecular recognition force spectroscopy (MR‐FS) was applied to investigate the dynamic interaction between aptamer GBI‐10 and tenascin‐C (TN‐C) on human glioblastoma cell surface at single‐molecule level. The unbinding force between aptamer GBI‐10 and TN‐C was 39 pN at the loading rate of 0.3 nN sec?1. A series of kinetic parameters concerning interaction process such as the unbinding force fu, the association rate constant kon, dissociation rate constant at zero force koff, and dissociation constant KD for aptamer GBI‐10/TN‐C complexes were acquired. In addition, the interaction of aptamer GBI‐10 with TN‐C depended on the presence of Mg2+. This work demonstrates that MR‐FS can be used as an attractive tool for exploring the interaction forces and dynamic process of aptamer and ligand at the single‐molecule level. As a future perspective, MR‐FS may be used as a potential diagnostic and therapeutic tool by combining with other techniques. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号