首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of interaction of sweet proteins with the T1R2-T1R3 sweet taste receptor has not yet been elucidated. Low molecular mass sweeteners and sweet proteins interact with the same receptor, the human T1R2-T1R3 receptor. The presence on the surface of the proteins of "sweet fingers", i.e. protruding features with chemical groups similar to those of low molecular mass sweeteners that can probe the active site of the receptor, would be consistent with a single mechanism for the two classes of compounds. We have synthesized three cyclic peptides corresponding to the best potential "sweet fingers" of brazzein, monellin and thaumatin, the sweet proteins whose structures are well characterized. NMR data show that all three peptides have a clear tendency, in aqueous solution, to assume hairpin conformations consistent with the conformation of the same sequences in the parent proteins. The peptide corresponding to the only possible loop of brazzein, c[CFYDEKRNLQC(37-47)], exists in solution in a well ordered hairpin conformation very similar to that of the same sequence in the parent protein. However, none of the peptides has a sweet taste. This finding strongly suggests that sweet proteins recognize a binding site different from the one that binds small molecular mass sweeteners. The data of the present work support an alternative mechanism of interaction, the "wedge model", recently proposed for sweet proteins [Temussi, P. A. (2002) FEBS Lett.526, 1-3.].  相似文献   

2.
In addition to many small molecular mass sweeteners there are in nature a few sweet proteins. The molecular volume of sweet proteins is so different from that of common sweeteners that it was difficult to understand how molecules as large as proteins can activate a receptor designed to host small molecules. We have recently shown that sweet proteins can activate the sweet receptor by a mechanism of interaction, called 'wedge model", in which proteins fit a large cavity of the receptor with wedge-shaped surfaces of their structures. In order to substantiate this model we have designed, expressed and characterized seven mutants of MNEI, a single chain monellin. Three uncharged residues of the interaction surface, Met42, Tyr63 and Tyr65, were changed either into acidic or basic residues whereas Asp68, a key acidic residue, was changed into a basic one. As a general trend, we observe that an increase of the negative charge is much more detrimental for sweetness than an increase of positive charge. In addition we show that by a careful choice of a residue at the center of the interface between MNEI and receptor, it is possible even to increase the sweetness of MNEI. These results are fully consistent with the wedge model.  相似文献   

3.
Brazzein is a small, intensely sweet protein. As a probe of the functional properties of its solvent-exposed loop, two residues (Arg-Ile) were inserted between Leu18 and Ala19 of brazzein. Psychophysical testing demonstrated that this mutant is totally tasteless. NMR chemical shift mapping of differences between this mutant and brazzein indicated that residues affected by the insertion are localized to the mutated loop, the region of the single alpha-helix, and around the Cys16-Cys37 disulfide bond. Residues unaffected by this mutation included those near the C-terminus and in the loop connecting the alpha-helix and the second beta-strand. In particular, several residues of brazzein previously shown to be essential for its sweetness (His31, Arg33, Glu41, Arg43, Asp50, and Tyr54) exhibited negligible chemical shift changes. Moreover, the pH dependence of the chemical shifts of His31, Glu41, Asp50, and Tyr54 were unaltered by the insertion. The insertion led to large chemical shift and pKa perturbation of Glu36, a residue shown previously to be important for brazzein's sweetness. These results serve to refine the known sweetness determinants of brazzein and lend further support to the idea that the protein interacts with a sweet-taste receptor through a multi-site interaction mechanism, as has been postulated for brazzein and other sweet proteins (monellin and thaumatin).  相似文献   

4.
The sweet protein brazzein [recombinant protein with sequence identical with the native protein lacking the N-terminal pyroglutamate (the numbering system used has Asp2 as the N-terminal residue)] activates the human sweet receptor, a heterodimeric G-protein-coupled receptor composed of subunits Taste type 1 Receptor 2 (T1R2) and Taste type 1 Receptor 3 (T1R3). In order to elucidate the key amino acid(s) responsible for this interaction, we mutated residues in brazzein and each of the two subunits of the receptor. The effects of brazzein mutations were assayed by a human taste panel and by an in vitro assay involving receptor subunits expressed recombinantly in human embryonic kidney cells; the effects of the receptor mutations were assayed by in vitro assay. We mutated surface residues of brazzein at three putative interaction sites: site 1 (Loop43), site 2 (N- and C-termini and adjacent Glu36, Loop33), and site 3 (Loop9-19). Basic residues in site 1 and acidic residues in site 2 were essential for positive responses from each assay. Mutation of Y39A (site 1) greatly reduced positive responses. A bulky side chain at position 54 (site 2), rather than a side chain with hydrogen-bonding potential, was required for positive responses, as was the presence of the native disulfide bond in Loop9-19 (site 3). Results from mutagenesis and chimeras of the receptor indicated that brazzein interacts with both T1R2 and T1R3 and that the Venus flytrap module of T1R2 is important for brazzein agonism. With one exception, all mutations of receptor residues at putative interaction sites predicted by wedge models failed to yield the expected decrease in brazzein response. The exception, hT1R2 (human T1R2 subunit of the sweet receptor):R217A/hT1R3 (human T1R3 subunit of the sweet receptor), which contained a substitution in lobe 2 at the interface between the two subunits, exhibited a small selective decrease in brazzein activity. However, because the mutation was found to increase the positive cooperativity of binding by multiple ligands proposed to bind both T1R subunits (brazzein, monellin, and sucralose) but not those that bind to a single subunit (neotame and cyclamate), we suggest that this site is involved in subunit-subunit interaction rather than in direct brazzein binding. Results from this study support a multi-point interaction between brazzein and the sweet receptor by some mechanism other than the proposed wedge models.  相似文献   

5.
A wide variety of chemically diverse compounds taste sweet, including natural sugars such as glucose, fructose, sucrose, and sugar alcohols, small molecule artificial sweeteners such as saccharin and acesulfame K, and proteins such as monellin and thaumatin. Brazzein, like monellin and thaumatin, is a naturally occurring plant protein that humans, apes, and Old World monkeys perceive as tasting sweet but that is not perceived as sweet by other species including New World monkeys, mouse, and rat. It has been shown that heterologous expression of T1R2 plus T1R3 together yields a receptor responsive to many of the above-mentioned sweet tasting ligands. We have determined that the molecular basis for species-specific sensitivity to brazzein sweetness depends on a site within the cysteine-rich region of human T1R3. Other mutations in this region of T1R3 affected receptor activity toward monellin, and in some cases, overall efficacy to multiple sweet compounds, implicating this region as a previously unrecognized important determinant of sweet receptor function.  相似文献   

6.
The gustatory effects of the sweet tasting proteins thaumatinand monellin were studied aftei application to small areas onthe anterior third of the tongue or to single fungiform papillae.The sweet sensation caused by thaumatin and monellin developedmore slowly, but reached a higher intensity and had a longerduration than that given by sucrose. Also, the response evokedby these sweet tasting proteins was more pronounced at the lateraledges, whereas that evoked by sucrose was stronger at the tipof the tongue. The taste modifier, miraculin, had no noticeableeffect on the sweet taste elicited by thaumatin, monellin andsucrose. Gymnemic acid abolished the sweet taste of all threecompounds. Experiments with time intervals of less than one minute betweenstimuli showed strong crossadaptation between thaumatin andmonellin, between the two proteins and sucrose, and betweenthe two proteins and miraculin-induced sweet taste of citricacid. While the differences in response to the sweet tasting proteinsand sucrose may be taken as evidence in favor of the existenceof more than one kind of sweet receptor, the cross-adaptationnoted between the various substances tested, would seem to indicatethat, at some point, they engage a common neural mechanism. 1On leave from Dept. of Prosthetics, Faculty of Odontology,Karolinska Institutet. Present address: Dept. of Histology,Karolinska Institutet, S-104 01 STOCKHOLM, Sweden.  相似文献   

7.
The prevalence of obesity and diabetes has increased exponentially in recent years around the globe, especially in India. Sweet proteins have the potential to substitute the sugars, by acting as natural, good and low calorie sweeteners. They also do not trigger a demand for insulin in diabetic patients unlike sucrose. In humans, the sweet taste perception is mainly due to taste-specific G protein-coupled heterodimeric receptors T1R2-T1R3. These receptors recognize diverse natural and synthetic sweeteners such as monelin, brazzein, thaumatin, curculin, mabinlin, miraculin and pentadin. Structural modeling of new sweetener proteins will be a great leap in further advancement of knowledge and their utility as sweeteners. We have explored the fingerprints of sweetness by studying the aminoacid composition and structure properties of the above proteins. The structural analysis of monellin revealed that the individual A or B chains of monellin are not contributing to its sweetness. However, the native conformation and ionic interaction between AspB7 of monellin with active site of T1R2-T1R3 receptor, along with hydrogen bonding stability of IleB6 and IleB8 are responsible for the sweet taste. Based on structural similarity search, we found a new hypothetical protein from Shewanella loihica, which has the presence of Asp(32) with adjacent isoleucine residues. Further, we examined the lead protein by two-step docking for the study of interaction of functionally conserved residues with receptors. The identified protein showed similar ionic and hydrophobic interactions with monelin. This gives a promising opportunity to explore this protein for potential health application in the low calorie sweetener industry viz., soft drinks, snacks, food, chocolate industries etc.  相似文献   

8.
The mechanism by which sweet proteins elicit a response on the T1R2-T1R3 sweet taste receptor is still mostly unknown but has been so far related to the presence of "sweet fingers" on the protein surface able to interact with the same mechanism as that of low molecular mass sweeteners. In the search for the identification of sweet fingers, we have solved the solution structure of G16A MNEI, a structural mutant that shows a reduction of one order of magnitude in sweetness with respect to its parent protein, MNEI, a single-chain monellin. Comparison of the structures of wild-type monellin and its G16A mutant shows that the mutation does not affect the structure of potential glucophores but produces a distortion of the surface owing to the partial relative displacement of elements of secondary structure. These results show conclusively that sweet proteins do not possess a sweet finger and strongly support the hypothesis that the mechanism of interaction of sweet-tasting proteins with the recently identified T1R2-T1R3 GPC receptor is different from that of low molecular mass sweeteners.  相似文献   

9.
植物甜蛋白的研究进展   总被引:8,自引:0,他引:8  
本文简要介绍了近年来在植物中发现的几种甜味蛋白质的分子结构及其化学性质。讨论了它们在结构上的相关性及可能的甜味机制,并对甜蛋白在食品工业及植物改良方面的应用进行了展望。  相似文献   

10.
The design of safe sweeteners is very important for people who are affected by diabetes, hyperlipemia, and caries and other diseases that are linked to the consumption of sugars. Sweet proteins, which are found in several tropical plants, are many times sweeter than sucrose on a molar basis. A good understanding of their structure-function relationship can complement traditional SAR studies on small molecular weight sweeteners and thus help in the design of safe sweeteners. However, there is virtually no sequence homology and very little structural similarity among known sweet proteins. Studies on mutants of monellin, the best characterized of sweet proteins, proved not decisive in the localization of the main interaction points of monellin with its receptor. Accordingly, we resorted to an unbiased approach to restrict the search of likely areas of interaction on the surface of a typical sweet protein. It has been recently shown that an accurate survey of the surface of proteins by appropriate paramagnetic probes may locate interaction points on protein surface. Here we report the survey of the surface of MNEI, a single chain monellin, by means of a paramagnetic probe, and a direct assessment of bound water based on an application of ePHOGSY, an NMR experiment that is ideally suited to detect interactions of small ligands to a protein. Detailed surface mapping reveals the presence, on the surface of MNEI, of interaction points that include residues previously predicted by ELISA tests and by mutagenesis.  相似文献   

11.
Brazzein is a small, heat-stable, intensely sweet protein consisting of 54 amino acid residues. Based on the wild-type brazzein, 25 brazzein mutants have been produced to identify critical regions important for sweetness. To assess their sweetness, psychophysical experiments were carried out with 14 human subjects. First, the results suggest that residues 29-33 and 39-43, plus residue 36 between these stretches, as well as the C-terminus are involved in the sweetness of brazzein. Second, charge plays an important role in the interaction between brazzein and the sweet taste receptor.  相似文献   

12.
The binding mechanism of sweet proteins to their receptor, a G-protein-coupled receptor, is not supported by direct structural information. In principle, the key groups responsible for biological activity (glucophores) can be localized on a small structural unit (sweet finger) or spread on a larger surface area. A recently proposed model, called "wedge model", implies a large surface of interaction with the receptor. To explore this model in greater detail, it is necessary to examine the physicochemical features of the surfaces of sweet proteins, since their interaction with the receptor, with respect to that of small sweeteners, is more dependent on general physicochemical properties of the interface, such as electrostatic potential and hydration. In this study, we performed exhaustive molecular dynamics simulations in explicit water of the sweet protein MNEI and of its structural mutant G-16A, whose sweetness is one order of magnitude lower than that of MNEI. Solvent density and self-diffusion calculated from molecular dynamics simulations suggest a likely area of interaction delimited by four stretches arranged as a tetrahedron whose shape is complementary to that of a cavity on the surface of the receptor, in agreement with the wedge model. The suggested area of interaction is amazingly consistent with known mutagenesis data. In addition, the asymmetric hydration of the only helix in both proteins hints at a specific role for this secondary structure element in orienting the protein during the binding process.  相似文献   

13.
In sequence-function investigations, approaches are needed for rapidly screening protein variants for possible changes in conformation. Recent NMR methods permit direct detection of hydrogen bonds through measurements of scalar couplings that traverse hydrogen bonds (trans-hydrogen bond couplings). We have applied this approach to screen a series of five single site mutants of the sweet protein brazzein with altered sweetness for possible changes in backbone hydrogen bonding with respect to wild-type. Long range, three-dimensional data correlating connectivities among backbone 1HN, 15N, and 13C' atoms were collected from the six brazzein proteins labeled uniformly with carbon-13 and nitrogen-15. In wild-type brazzein, this approach identified 17 backbone hydrogen bonds. In the mutants, altered magnitudes of the couplings identified hydrogen bonds that were strengthened or weakened; missing couplings identified hydrogen bonds that were broken, and new couplings indicated the presence of new hydrogen bonds. Within the series of brazzein mutants investigated, a pattern was observed between sweetness and the integrity of particular hydrogen bonds. All three "sweet" variants exhibited the same pattern of hydrogen bonds, whereas all three "non-sweet" variants lacked one hydrogen bond at the middle of the alpha-helix, where it is kinked, and one hydrogen bond in the middle of beta-strands II and III, where they are twisted. Two of the non-sweet variants lack the hydrogen bond connecting the N and C termini. These variants showed greater mobility in the N- and C-terminal regions than wild-type brazzein.  相似文献   

14.
Responses to brazzein, 25 brazzein mutants and two forms of monellin were studied in two types of experiments: electrophysiological recordings from chorda tympani S fibers of the rhesus monkey, Macaca mulatta, and psychophysical experiments. We found that different mutations at position 29 (changing Asp29 to Ala, Lys or Asn) made the molecule significantly sweeter than brazzein, while mutations at positions 30 or 33 (Lys30Asp or Arg33Ala) removed all sweetness. The same pattern occurred again at the beta-turn region, where Glu41Lys gave the highest sweetness score among the mutants tested, whereas a mutation two residues distant (Arg43Ala) abolished the sweetness. The effects of charge and side chain size were examined at two locations, namely positions 29 and 36. The findings indicate that charge is important for eliciting sweetness, whereas the length of the side-chain plays a lesser role. We also found that the N- and C-termini are important for the sweetness of brazzein. The close correlation (r = 0.78) between the results of the above two methods corroborates our hypothesis that S fibers convey sweet taste in primates.  相似文献   

15.
The electrical activity in the chorda tympani proper nerve ofdog, hamster, pig and rabbit was recorded during stimulationof the tongue with the sweet proteins, monellin and thaumatin,and stimuli representing the four taste qualities. It was observedthat these proteins, which to man taste extremely sweet andin the monkey elicit a significant neural response, caused,except for monellin in the dog, no significant change in theneural activity. On the basis of these results it is suggestedthat different types of ‘sweet’ receptor sites existin mammals.  相似文献   

16.
The intensely sweet proteins thaumatin and monellin were covalently attached to affinity column supports. Lingual tissue extracts were incubated with the affinity columns which were then eluted with glycine-HCl pH 3.4, the sweet peptide aspartame, or gymnemic acid, which is a sweet taste modifier. SDS-PAGE analysis of eluates from the columns showed that 156 kDa and 47 kDa proteins were the main components from cow fungiform papillae which were specifically bound to thaumatin and monellin. These proteins could be displaced from the column with 0.5 mM aspartame or 0.5 mg/ml gymnemic acid. With circumvallate papillae small amounts of 47 kDa protein were also found. The 47 kDa protein was also the major component bound to a gymnemic acid affinity column and could be displaced from the column with 0.5 mg/ml gymnemic acid. Control experiments with other lingual tissue components indicated that these proteins are localised in the gustatory papillae. Similar protein patterns were also found in extracts of pig fungiform papillae and rat lingual preparations.  相似文献   

17.
The structure of monellin and its relation to the sweetness of the protein.   总被引:1,自引:0,他引:1  
The sweet protein monellin [1-3] has been shown to consist of two non-identical subunits of 50 and 42 amino acid residues, which were separated electrophoretically and chromatographically. Automatic sequential Edman degradation gave the complete sequence of the longer subunit, and a partial sequency of the shorter one. It was found that the sweetness of monellin requires the undissociated molecule. The individual subunits were not sweet, neither did they block the sweet sensation of sucrose or monellin. Blocking of the single SH of monellin abolished its sweetness as did reaction of the single methionyl residue with CNBr. Since the cysteinyl and methionyl residues appear to be adjacent, it is suggested that this part of the molecule is essential for its sweetness.  相似文献   

18.
The sweet protein brazzein, a member of the Csβα fold family, contains four disulfide bonds that lend a high degree of thermal and pH stability to its structure. Nevertheless, a variable temperature study has revealed that the protein undergoes a local, reversible conformational change between 37 and 3°C with a midpoint about 27°C that changes the orientations and side‐chain hydrogen bond partners of Tyr8 and Tyr11. To test the functional significance of this effect, we used NMR saturation transfer to investigate the interaction between brazzein and the amino terminal domain of the sweet receptor subunit T1R2; the results showed a stronger interaction at 7°C than at 37°C. Thus the low temperature conformation, which alters the orientations of two loops known to be critical for the sweetness of brazzein, may represent the bound state of brazzein in the complex with the human sweet receptor. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The relative significance of weak non-covalent interactions in biological context has been much debated. Here, we have addressed the contribution of Coulombic interactions to protein stability and assembly experimentally. The sweet protein monellin, a non-covalently linked heterodimeric protein, was chosen for this study because of its ability to spontaneously reconstitute from separated fragments. The reconstitution of monellin mutants containing large surface charge perturbations was compared to the thermostability of structurally equivalent single-chain monellin containing the same sets of mutations under varying salt concentrations. The affinity between monellin fragments is found to correlate with the thermostability of single chain monellin, indicating the involvement of the same underlying Coulombic interactions. This confirms that there are no principal differences in the interactions involved in folding and binding. Based on comparison with a previous mutational study involving hydrophobic core residues, the relative contribution of Coulombic interactions to stability and affinity is modest. However, the Coulombic perturbations only affect the association rates of reconstitution in contrast to perturbations involving hydrophobic residues, which affect primarily the dissociation rates. These results indicate that Coulombic interactions are likely to be of main importance for the association of protein assembly, relevant for functions of proteins.  相似文献   

20.
Highly probable active site of the sweet protein monellin.   总被引:4,自引:0,他引:4  
The sweet protein monellin consists of two noncovalently associated polypeptide chains, the A chain of 44 amino acid residues and the B chain of 50 residues. Synthetic monellin is 4000 times as sweet as sucrose on a weight basis, and the native conformation is essential for the sweet taste. Knowledge of the active site of monellin will provide important information on the mode of interaction between sweeteners and their receptors. If the replacement of a certain amino acid residue in monellin removes the sweet taste, while the native conformation is retained, it may be concluded that the position replaced is the active site. Our previous replacement studies on Asp residues in the A chain did not remove the sweet taste. The B chain contains two Asp residues at positions 7 and 21, which were replaced by Asn. [AsnB21]Monellin and [AsnB7]monellin were 7000 and 20 times sweeter than sucrose, respectively. The low potency of the [AsnB7]monellin indicates that AspB7 participates in binding with the receptor. AspB7 was then replaced by Abu. [AbuB7]Monellin was devoid of sweetness, and retained the native conformation. AspB7 is located at the surface of the molecule (Ogata et al.). These results suggest that Asp7 in the B chain is the highly probable active site of monellin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号