首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biomarkers》2013,18(8):642-648
Occupational exposure to photocopiers has been indicated as being responsible for a number of health complaints, particularly effects on the respiratory, immunological, and nervous systems. In this study, we investigated oxidative and genotoxic damage in photocopier operators by assessing catalase activity (CAT), reduced vs. oxidized glutathione ratio (GSH/GSSG), level of lipid peroxidation (TBARS), damage index by Comet assay (DICA), and buccal cells with micronuclei (BCMN). Our results reveal that the TBARS levels in operators were increased (27%; p<0.05) but that no significant alterations to GSH/GSSG or CAT activity were observed. The DICA and the number of BCMN were significantly increased (134% and 100%, respectively; p<0.05) in the exposed group. There was a significant association between the time in months spent at work and DNA damage in lymphocytes (rs?=?0.720; p<0.001) and buccal cell with MN (rs?=?0.538; p<0.001). Because laser printers and photocopiers have become increasingly used, it is important to control human exposure using reliable biomarkers.  相似文献   

2.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

3.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.  相似文献   

4.
Total glutathione (t-GSH), reduced glutathione (GSH), glutathione disulphide (GSSG) levels, t-GSH/GSSG ratio, glutathione peroxidase (GSH-Px) activity and lipid peroxidation (LPO) levels were investigated during the development period of a predominantly aquatic amphibian R.r.ridibunda and a predominantly terrestrial amphibian B. viridis. While t-GSH and GSH showed a similar trend, GSSG concentration increased significantly (p<0.05) during the larval stages in R.r.ridibunda larvae. In contrast to R.r.ridibunda larvae, there was no significant (p>0.05) change between 1 and 5 weeks in the t-GSH and GSH concentrations of B. viridis. t-GSH and GSH concentrations of B. viridis larvae became sharply elevated after the fifth week, GSSG levels increased 3.25-fold during the metamorphosis. The t-GSH/GSSG ratio fluctuated and the lowest t-GSH/GSSG ratios were observed at the third week for both species. GSH-Px activities for both species increased significantly (p<0.05) during the growing period. The highest GSH-Px activities in R.r.ridibunda and B.viridis were observed at the eighth week and they were 3.45 +/- 0.17 and 4.1 +/- 0.21 IU mg(-1), respectively. The membrane LPO levels in the R.r.ridibunda and B. viridis tadpoles significantly (p<0.001) decreased from 206 +/- 10.3 to 146 +/- 7.3 and from 198 +/- 9.9 to 23 +/- 1.15 nmol MDA g(-1) w.w., respectively.  相似文献   

5.
The induction of defense systems against metal exposure was investigated in 48 wild-growing fruiting bodies of the king bolete (Boletus edulis) from two areas polluted with several transition metals from smelters, as well as five reference areas. To determine the degree of metal exposure, cadmium (Cd), zinc (Zn), and copper (Cu) were determined in caps of fruiting bodies by atomic absorption spectrophotometry (AAS), whereas mercury (Hg) was determined by cold vapor atomic fluorescence spectrometry (CVAFS). Caps were analyzed further with respect to relative activities of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), as well as concentrations of total glutathione (GSHTOT = GSH + GSSG) and relative concentrations of heat shock protein 70 kDa (HSP70). The results showed that concentrations of the four metals, as well as SOD, CAT and HSP70, were significantly elevated in the exposed group (Mann-Whitney, P < or = 0.001). In contrast, GSHTOT was significantly lowered in the exposed group (P < or = 0.05). Significant positive correlations were established between concentrations of Cd, Zn, Hg, or Cu and activities of SOD (Spearman's P < or = 0.01 for the association between SOD and Cd, P < or = 0.001 for all other metal exposure parameters), CAT (P < or = 0.001 for all exposure parameters), or expression of HSP70 (P < or = 0.001 for all exposure parameters). Significant negative correlations were found between total GSH and Cd (P < or = 0.001), Zn (P < or = 0.001), or Hg (P < or = 0.05). We conclude that antioxidant enzymes are induced in wild-growing B. edulis exposed to environmentally relevant concentrations of potentially toxic transition metals; whereas the net consumption of GSH that occurs with increasing metal exposure may reflect GSH consumption by mechanisms of metal detoxification. Finally, the induction of HSP70 suggests that the antioxidant response and the mechanisms in which GSH is consumed are insufficient for protection against the harmful effects of severe metal stress.  相似文献   

6.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

7.
Glutathione status and antioxidant enzymes in various types of rat skeletal muscle were studied after an acute bout of exercise (Ex) at different intensities. Glutathione (GSH) and glutathione disulfide (GSSG) concentrations were the highest in soleus (SO) muscle, followed by those in deep (DVL) and then superficial (SVL) portions of vastus lateralis. In DVL, but not in SO or SVL, muscle GSH increased proportionally with Ex intensity and reached 1.8 +/- 0.08 mumol/g wet wt compared with 1.5 +/- 0.03 (P < 0.05) in resting controls (R). GSSG in DVL was increased from 0.10 +/- 0.01 mumol/g wet wt in R to 0.14 +/- 0.01 (P < 0.05) after Ex. Total glutathione (GSH + GSSG) contents in DVL were also significantly elevated with Ex, whereas GSH/GSSG ratio was unchanged. Activities of GSH peroxidase (GPX), GSSG reductase (GR), and catalase (CAT) were significantly higher in SO than in DVL and SVL, but there was no difference in superoxide dismutase activity between the three muscle types. Furthermore, Ex at moderate intensities elicited significant increases in GPX, GR, and CAT activities in DVL muscle. None of the antioxidant enzymes was affected by exercise in SO. It is concluded that rat DVL muscle is particularly vulnerable to exercise-induced free radical damage and that a disturbance of muscle GSH status is indicative of an oxidative stress.  相似文献   

8.
Identifying patients at risk of developing premature coronary artery disease (PCAD) which occurs at age below 45 years old and constitutes approximately 7–10% of coronary artery disease (CAD) worldwide remains a problem. Oxidative stress has been proposed as a crucial step in the early development of PCAD. This study was conducted to determine the oxidative status of PCAD in comparison to CAD patients. PCAD (<45 years old) and CAD (>60 years old) patients were recruited with age-matched controls (n?=?30, each group). DNA damage score, plasma malondialdehyde (MDA) and protein carbonyl content were measured for oxidative damage markers. Antioxidants such as erythrocyte glutathione (GSH), oxidised glutathione (GSSG), and glutathione peroxidase activity (GPx), superoxide dismutase (SOD) and catalase (CAT) were also determined. DNA damage score and protein carbonyl content were significantly higher in both PCAD and CAD when compared to age-matched controls while MDA level was increased only in PCAD (p<.05). In contrast, GSH, GSH/GSSG ratio, α-tocotrienol isomer, and GPx activity were significantly decreased, but only in PCAD when compared to age-matched controls. The decrease in GSH was associated with PCAD (OR?=?0.569 95%CI [0.375???0.864], p?=?.008) and cut-off values of 6.69?μM with areas under the ROC curves (AUROC) 95%CI: 0.88 [0.80–0.96] (sensitivity of 83.3%; specificity of 80%). However, there were no significant differences in SOD and CAT activities in all groups. A higher level of oxidative stress indicated by elevated MDA levels and low levels of GSH, α-tocotrienol and GPx activity in patients below 45 years old may play a role in the development of PCAD and has potential as biomarkers for PCAD.  相似文献   

9.
王银  朱艺峰  陈芝丹 《生态科学》2011,30(3):301-308
检索中国期刊全文数据库(1994.1~2009.8)、万方数据库(1980.1~2009.8)、维普数据库(1989.1~2009.8),以及Scopus(1960.1~2009.8)、Elsevier(52009.8)、SpringerLink(52009.8)和Blackwell(52009.8)数据库,系统收集涉及温度变化导致鱼类组织超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)、谷胱甘肽还原酶(GR)、还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)和丙二醛(MDA)变化的相关研究,对纳入23篇文献进行了数据提取和Meta分析,并系统评价变温对鱼类抗氧化防御的影响。除GSSG由于研究数太少不能分析外,Meta分析显示:升温显著提高SOD(标准化均数差SMD=1.0,95% CI=0.4~1.7,P=0.001)和GPX(SMD=0.4,95% CI=0.1~0.7,P=0.005)活力,降温显著下调GPX(SMD=-0.9,95% CI=-1.7~-0.1,P=0.025)和GR(SMD=-1.6,95% CI=-2.5~-0.8,P<0.001)活力。升降温对CAT活力和GSH均无显著影响(P>0.05),但都会显著增加MDA水平(SMD=1.2~1.4,P<0.006)。不同鱼类、组织和测定方法不是引起研究异质性的主要因素,但试验设计的变温幅度是产生SOD、CAT和MDA研究间异质性的主要因子,实验开始温度也会引起GSH研究间的异质性。  相似文献   

10.
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.  相似文献   

11.
Oztürk O  Gümüşlü S 《Life sciences》2004,75(13):1551-1565
The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.  相似文献   

12.
Eicosapentaenoic acid (EPA) is one of the major dietary polyunsaturated fatty acids and induces apoptosis in several cancer cells. In this study, the EPA induced lipid peroxidation and response of antioxidative enzymes have been investigated in rat pheochromocytoma PC12 cells to elucidate the mechanisms of apoptosis induced by the polyunsaturated fatty acid EPA. We have analyzed superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and glutathione (GSH) contents in PC12 cells after exposure to different concentrations of EPA. Lipid peroxidation was shown to increase in the presence of EPA as an indication of the oxidative damage. Lipid peroxidation was enhanced by EPA in a dose-dependent manner, and the loss of cell viability was partially reversed by vitamin E. In the case of antioxidant enzyme activities, SOD and GPX activities and GSH contents increased significantly at 50 μmol/L EPA and were respectively 2.41-fold (p < 0.01), 3.49-fold (p < 0.05), and 1.43-fold (p < 0.05) higher than controls. The CAT activity at 10 μmol/L had the highest value and was increased by 25.83% (p < 0.05) compared to control. The results suggest that in PC12 cells the mechanism of apoptosis induced by EPA may be partly due to lipid peroxidation.  相似文献   

13.
Many individuals with cardiovascular diseases undergo periodic physical conditioning with or without medication. Therefore, this study investigated the interaction of exercise training and chronic nitroglycerin treatment on blood pressure (BP) and alterations in nitric oxide (NO), glutathione (GSH), antioxidant enzyme activities and lipid peroxidation in rats. Fisher 344 rats were divided into four groups: (1) sedentary control, (2) exercise training for 8 weeks, (3) nitroglycerin (15 mg/kg, s.c. for 8 weeks) and (4) training + nitroglycerin for 8 weeks. BP, heart rate (HR) and respiratory exchange ratio (RER) were monitored weekly for 8 weeks using tail-cuff method and oxygen/carbon dioxide analyzer, respectively. The animals were sacrificed 24 h after last treatments and plasma isolated and analyzed using HPLC, ELISA and UV-VIS spectrophotometric techniques. The results show that exercise conditioning significantly enhanced NO production (p < 0.001), GSH levels (p < 0.001), GSH/GSSG ratio (p < 0.05) and the up-regulation of the activities of catalase (CAT) (p < 0.05), glutathione peroxidase (GSH-Px) (p < 0.001), and glutathione reductase (GR) (p < 0.05), and depression of lactate levels (p < 0.001) in the plasma of the rat. These biochemical changes were accompanied by a significant increase in RER (p < 0.001) without a significant change in BP and HR. Chronic nitroglycerin administration significantly increased NO levels (p < 0.05), GSH levels (p < 0.001), superoxide dismutase (SOD) activity (p < 0.05), GST activity (p < 0.05), and decreased MDA levels (p < 0.05). These biochemical changes were accompanied by a significant decrease in BP (p < 0.05) and without any significant changes in HR and RER. Interaction of exercise training and chronic nitroglycerin treatment resulted in normalization of plasma NO, MDA, lactate levels, and CAT activity. The combination of exercise and nitroglycerin significantly enhanced GSH levels (p < 0.05), and the up-regulation of SOD (p < 0.001), GSH-Px (p < 0.05), GR (p < 0.05) and GST (p < 0.001) activities. These biochemical changes were accompanied by normalization of BP and a significant increased in RER (p < 0.001). The data suggest that the interaction of physical training and chronic nitroglycerin treatment resulted in the maintenance of BP and the up-regulation of plasma antioxidant enzyme activities and GSH levels in the rat.  相似文献   

14.
Hong Y  Hu HY  Xie X  Li FM 《Journal of plant physiology》2008,165(12):1264-1273
Macrophytic allelochemicals are considered an environment-friendly and promising alternative to control algal bloom. However, studies examining the potential mechanisms of inhibitory allelochemicals on algae are few. The allelochemical ethyl 2-methyl acetoacetate (EMA), isolated from reed (Phragmites communis), was a strong allelopathic inhibitor on the growth of Microcystis aeruginosa. EMA-induced antioxidant responses were investigated in the cyanobacterium M. aeruginosa to understand the mechanism of EMA inhibition on algal growth. The activities of enzymatic antioxidants superoxide dismutase (SOD) and catalase (CAT), and the contents of non-enzymatic antioxidants reduced glutathione (GSH) and ascorbic acid (AsA) of M. aeruginosa cells were analyzed after treatments with different concentrations of EMA. Exposure of M. aeruginosa to EMA caused changes in enzyme activities and contents of non-enzymatic antioxidants in different manners. The decrease in SOD activity occurred first after 4h of EMA exposure, and more markedly after 40h. CAT activity did not change after 4h of EMA exposure, but increased obviously after 40h. The contents of AsA and GSH were increased greatly by EMA after 4h. After 60h, low EMA concentrations still increased the CAT activity and the contents of AsA and GSH, but high EMA concentrations started to impose a marked suppression on them. EMA increased dehydroascorbate (DHAsA) and oxidized glutathione (GSSG) contents during all exposure times. After 60h, the regeneration rates of AsA and GSH (represented by the AsA/DHAsA ratio and GSH/GSSG ratio, respectively) were reduced by high EMA concentrations. These results suggest that the activation of CAT and the availability of AsA and GSH at early exposure are important to counteract the oxidative stress induced by EMA, and the inactivation of SOD may be crucial to the growth inhibition of M. aeruginosa by EMA.  相似文献   

15.
BackgroundLead (Pb) is ubiquitous in the environment and is an environmental genotoxic metal. Pb accumulation in the body could cause the oxidative stress.ObjectiveThis meta-analysis aimed to perform a systematic evaluation of the extent of oxidative damage in rats/mice induced by lead.MethodsAll relevant articles in English or Chinese were retrieved from Embase, PubMed, Web of Science, Medline, China National Knowledge Infrastructure, and Chinese Biological Medicine databases from their inception date until July 22, 2018.ResultsA total of 108 eligible articles were included in this study. The indicators of oxidative stress included malondialdehyde (MDA), glutathione disulfide (GSSG), reactive oxygen species (ROS), hydrogen peroxide (H2O2), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione-s-transferase (GST). The meta-analysis showed that lead significantly increased oxidants levels, such as MDA, GSSG, ROS, and H2O2 (P < 0.05), and significantly reduced the level of antioxidants, such as CAT, GPx, GR, GSH, SOD, and GST (P < 0.05). The intraperitoneal mode was more effective than water drinking mode in reducing the levels of CAT, GPx, GSH, and SOD (P < 0.05). Other factors that influenced the overall oxidative stress, including species of animals, type of tissues, and intervention dosage and time, were comprehensively evaluated.ConclusionThe results of meta-analysis indicated that mice were more sensitive to lead than rats, and intraperitoneal mode was an effective intervention mean. High doses and long periods of lead treatment can cause serious oxidative damage. Moreover, testicular was more vulnerable to lead than other tissues. These results provided scientific evidence for preventing and treating lead toxicity.  相似文献   

16.
Radiofrequency radiations (RFRs) emitted by mobile phone base stations have raised concerns on its adverse impact on humans residing in the vicinity of mobile phone base stations. Therefore, the present study was envisaged to evaluate the effect of RFR on the DNA damage and antioxidant status in cultured human peripheral blood lymphocytes (HPBLs) of individuals residing in the vicinity of mobile phone base stations and comparing it with healthy controls. The study groups matched for various demographic data including age, gender, dietary pattern, smoking habit, alcohol consumption, duration of mobile phone use and average daily mobile phone use. The RF power density of the exposed individuals was significantly higher (p < 0.0001) when compared to the control group. The HPBLs were cultured and the DNA damage was assessed by cytokinesis blocked micronucleus (MN) assay in the binucleate lymphocytes. The analyses of data from the exposed group (n = 40), residing within a perimeter of 80 m of mobile base stations, showed significantly (p < 0.0001) higher frequency of micronuclei when compared to the control group, residing 300 m away from the mobile base station/s. The analysis of various antioxidants in the plasma of exposed individuals revealed a significant attrition in glutathione (GSH) concentration (p < 0.01), activities of catalase (CAT) (p < 0.001) and superoxide dismutase (SOD) (p < 0.001) and rise in lipid peroxidation (LOO) when compared to controls. Multiple linear regression analyses revealed a significant association among reduced GSH concentration (p < 0.05), CAT (p < 0.001) and SOD (p < 0.001) activities and elevated MN frequency (p < 0.001) and LOO (p < 0.001) with increasing RF power density.  相似文献   

17.
Ischemia/reperfusion is a potentially hazardous condition that increases reactive oxygen species (ROS) production and oxidative damage. Seals of the phocid family experience repetitive episodes of ischemia/reperfusion during and after a dive as a consequence of preferential distribution of blood flow to the central nervous system and reduction or elimination of perfusion in most vascular beds. Previous studies showed that ROS production is higher in ringed seal than in domestic pig tissues as a direct consequence of the ischemia/reperfusion associated with the diving response; however, oxidative damage is not related to this high ROS production. Apparently, antioxidant enzyme activities participate in the antioxidant protection in ringed seal tissues. In the present study we addressed the potential antioxidant protection of the glutathione system against dive-induced ischemia/reperfusion in ringed seal tissues. Total glutathione (GSH-Eq = GSH + 2GSSG), glutathione (GSH) and glutathione disulfide (GSSG), the ratio GSSG:GSH-Eq, the activities of the enzymes glutathione disulfide reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH), as well as lipid peroxidation (TBARS) and carbonyl proteins, were measured in ringed seal and domestic pig heart, kidney, liver, lung and muscle samples. In heart, kidney, lung and muscle GSH-Eq and GSH content was higher in seal than in pig (p < 0.05). GSSG content was higher in seal than in pig heart kidney, liver and muscle (p < 0.05). GR and G6PDH activities were higher in all seal than in pig tissues (p < 0.05). GSSG:GSH-Eq ratio was higher in pig than in seal heart, and lung (p < 0.05). TBARS content was higher in pig than in seal lung (p < 0.05). Higher content of carbonyl proteins was present in pig than in seal heart, kidney, liver and muscle (p < 0.05). These results suggest that the glutathione levels and the activity of enzymes involved in its recycling are efficient mechanisms that ameliorate protein and lipid oxidative damage and protect ringed seal tissues against dive-induced ischemia/reperfusion.  相似文献   

18.
Catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) activities, as well as malondialdehyde (MDA) and reduced glutathione (GSH) and oxidized glutathione (GSSG) contents, were determined during the growth of the unicellular marine alga Lingulodinium polyedrum (Stein) Dodge in batch‐cultures. CAT and APX activity peaks were detected at the beginning of algal exponential growth, although declining trends were subsequently identified in both enzymes, with a slight increase in CAT activity at the end of the experimental period. MDA content attained maximum values from day 0–3 and at the end of the experimental period (day 21), declining halfway from day 10–14. GSH and GSSG contents presented the highest values at the beginning of the growth curve, decreasing from day 3 onwards. Despite the depletion of the GSH pool, an upward trend was observed in the (GSH) (0.5 GSSG + GSH)?1 ratio, indicating that the L. polyedrum cells were able to maintain an increasing redox potential along exponential and linear growth phases in their efforts to prevent oxidative stress.  相似文献   

19.
Rodrigo R  Rivera G  Orellana M  Araya J  Bosco C 《Life sciences》2002,71(24):2881-2895
This study evaluated the antioxidant defense system of the rat kidney following chronic exposure to red wine rich in flavonols. Both ethanol and antioxidant non-alcoholic wine components, mainly polyphenols, could contribute to the antioxidant status of kidney. Adult rats were given separately, water, ethanol (12.5%), red wine or alcohol-free red wine. After ten weeks of treatment, blood samples were obtained to determine plasma antioxidant capacity (FRAP, ferric reducing ability of plasma), uric acid and ethanol levels. Kidney tissues (cortex and papilla) were separated to perform measurements of reduced glutathione (GSH), glutathione disulfide (GSSG), lipid peroxidation (malondialdehyde, MDA) and the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The activity of (Na + K)-ATPase, a membrane-bound enzyme, was also assessed. Red wine in plasma, elevated the FRAP without changing the concentration of uric acid; in kidney, it diminished the MDA production and elevated the GSH/GSSG ratio and the activity of CAT and GSH-Px. The activity of SOD did not change. Despite the finding that renal (Na + K)-ATPase activity was upregulated by ethanol, it was not altered by either red wine or alcohol-free red wine. The effects on the antioxidant enzymes could be attributed to ethanol, but the increase in the FRAP and GSH/GSSG ratio is attributed to the non-alcoholic components of red wine. These data suggest that there is an enhancement of the antioxidant defense potential in kidney and plasma, after chronic red wine consumption. Both ethanol and the non-alcoholic antioxidant constituents of red wine could be responsible for these effects.  相似文献   

20.
本文以雄性罗斯肉鸡为材料,探讨饲粮添加不同蛋氨酸源:蛋氨酸(DLM)、蛋氨酸羟基类似物(HMTBA)和蛋氨酸羟基类似物钙盐(HMTB-Ca)对肉鸡骨骼性能和基因表达的影响。结果表明,HMTBA和HMTB-Ca能提高肉鸡终体重、日增重、血液GSH/GSSG比值、抗氧化酶(CAT)水平、总抗氧化能力(T-AOC)、骨骼长度、重量、骨骼指数(p<0.05)。不同蛋氨酸源对肉仔鸡采食量、料重比和灰分含量影响不显著(p>0.05),HMTBA组骨生长分化因子-5(GDF-5)表达量显著上升(p<0.05)。HMTB-Ca显著提高骨骼强度、钙磷含量,下调金属基质蛋白酶-2(MMP-2)、金属基质蛋白酶-9(MMP-9)的表达水平(p<0.05)。由此可知,采食蛋氨酸羟基类似物及其钙盐饲粮,可提高肉鸡体增重,改善血液氧化还原状态,改善骨骼生长发育,其中HMTB-Ca对骨骼作用更显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号