首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiopoietins are ligands of the Tie2 receptor that control angiogenic remodeling in a context-dependent manner. Tie signaling is involved in multiple steps of the angiogenic remodeling process during development, including destabilization of existing vessels, endothelial cell migration, tube formation and the subsequent stabilization of newly formed tubes by mesenchymal cells. Beyond this critical role in blood vessel development, recent studies suggest a wider role for Tie2 and angiopoietins in lymphangiogenesis and the development of the hematopoietic system, as well as a possible role in the regulation of certain non-endothelial cells. The outcome of Tie signaling depends on which vascular bed is involved, and crosstalk between different VEGFs has an important modulating effect on the properties of the angiopoietins. Signaling through the Tie1 receptor is not well understood, but Tie1 may have both angiopoietin-dependent and ligand-independent functions. Changes in the expression of Tie receptors and angiopoietins occur in many pathological conditions, and mutations in the Tie2 gene are found in familial cases of vascular disease.  相似文献   

2.
Abstract

The Angiopoietin-1 (Angpt1)/Tie2 signaling pathway is important in regulating vascular function. Angpt1-induced Tie2 activation promotes vascular endothelial cell survival and reduces vascular leakage. Angiopoietin-2 (Angpt2), a weak agonist/antagonist of Tie2, opposes and regulates Angpt1 action. The Tie family of receptor tyrosine kinases, Tie2 and Tie1, exist as either homo-or heterodimers. The molecular complex between the receptors is also crucial in controlling Angpt1 signaling; hence, the molecular balance between Angpt1:Angpt2 and Tie2:Tie1 is important in determining endothelial integrity and vascular stability. This review presents evidence of the change observed in the Angiopoietin/Tie molecules in various pathophysiological conditions and discusses the potential clinical applications of these molecules in vascular complications.  相似文献   

3.
Tie2 and VEGF receptors (VEGFRs) are tyrosine kinases that play essential roles in angiogenesis. Activation of both receptors leads to the activation of Akt, an important mediator of cell survival and cell motility. In this study, we compared the role of Akt in Tie2-mediated versus VEGF-mediated endothelial cell (EC) survival and EC sprouting. Our data show that Akt is required and sufficient to mediate Ang1-induced EC survival in response to growth factor depletion. Blocking Akt function abolishes angiopoietin 1 (Ang1), a ligand for Tie2, mediated EC survival, and activating Akt rescues a Tie2 blockade-induced EC apoptosis. In contrast, activating Akt rescues EC apoptosis induced by a VEGF blockade, but interestingly, blocking Akt function has no effects on VEGF-induced EC survival, demonstrating that Akt is sufficient but not required for VEGF-mediated EC survival. In addition, we show that both Ang1 and VEGF induce EC sprouting in a three-dimensional collagen gel, which depends on the activation of Akt. Blocking Akt action inhibited EC sprouting induced by Ang1 or VEGF. Therefore, the data show that Akt is the primary mediator of Ang1-induced EC survival while multiple pathways are involved downstream of VEGF responsible for EC survival. However, Akt is required and sufficient to mediate the EC sprouting induced by both Ang1 and VEGF.  相似文献   

4.
Tie2受体研究进展及其在抗肿瘤治疗中的应用   总被引:2,自引:0,他引:2  
Tie2是胚胎血管发育和肿瘤血管形成都需要的内皮细胞酪氨酸激酶受体,血管生成素(Ang)是其配体。正常成人组织中,Ang/Tie2受体水平较低,用于维持成熟的血管结构;一般癌组织中Ang/Tie2的表达较为活跃。本综述了Ang/Tie2的结构和功能研究的最新进展,Ang/Tie2在血管形成中的重要调节作用,以及可溶性Tie2在治疗肿瘤方面的前景。  相似文献   

5.
Angiopoietin-1 and -2 are endogenous ligands for the vascular endothelial receptor tyrosine kinase Tie2. Signalling by angiopoietin-1 promotes vascular endothelial cell survival and the sprouting and reorganisation of blood vessels, as well as inhibiting activation of the vascular endothelial barrier to reduce leakage and leucocyte migration into tissues. Angiopoietin-2 generally has an opposing action, and is released naturally at times of vascular growth and inflammation. There is a significant body of emerging evidence that promoting the actions of angiopoietin-1 through Tie2 is of benefit in pathologies of vascular activation, such as sepsis, stroke, diabetic retinopathy and asthma. Similarly, methods to inhibit the actions of angiopoietin-2 are emerging and have been demonstrated to be of preclinical and clinical benefit in reducing tumour angiogenesis. Here the author reviews the evidence for potential benefits of modulation of the interaction of angiopoietins with Tie2, and the potential applications. Additionally, methods for delivery of the complex protein angiopoietin-1 are discussed, as well as potentially deleterious consequences of administering angiopoietin-1.  相似文献   

6.
Modulation of Tie2 receptor activity by angiopoietin ligands is crucial for angiogenesis, blood vessel maturation, and vascular endothelium integrity. The role of the angiopoietin (Ang) and Tie system in myocardial infarction is not well understood. To investigate the participation of the Ang/Tie in myocardial infarction, adult Sprague-Dawley rats with ligation of the left anterior descending coronary artery to induce myocardial infarction were studied. Ang1, Ang2, Tie1, and Tie2 were measured immediately after ligation of the coronary artery, and at 6 h, 1 and 3 days, and 1, 2, 3 and 4 weeks after ligation by Northern blotting, Western blotting, and immunohistochemical staining. Ang2 mRNA significantly increased from 2 weeks (2.1-fold) to 4 weeks (2.9-fold) after the infarction in the left ventricular free wall. Tie2 mRNA increased significantly from 1 week (2.1-fold) to 4 weeks (3.8-fold) after the infarction. Ang2 protein also significantly increased from 3 days (1.9-fold) to 4 weeks (3-fold) after the infarction in the left ventricular free wall. Tie2 protein increased 2.4-fold at 3 weeks and 2.8-fold at 4 weeks after the infarction. Neither Ang1 nor Tie1 mRNA or protein showed any significant change at any time point after the infarction. The ratio of Ang2/Ang1 mRNA and protein in the study group was higher than that in the control group. Ang2 and Tie2 expression in nonischemic myocardium showed no significant change. Immunohistochemical study also showed increased immunoreactivity of Ang2 and Tie2 at the infarct border. In conclusion, Ang2 and Tie2 expressions significantly increased both spatial and temporal patterns after myocardial infarction in the rat ventricular myocardium, while Ang1 and Tie1 receptor expression did not.  相似文献   

7.
Tie2 is an endothelium-specific receptor tyrosine kinase known to play an important role in tumor angiogenesis. We sought to identify a small peptide ligand against Tie2 for developing a delivery targeting agent. We used hydrophobic analysis and comparative sequence/structure analysis to select a minimal peptide based on angiopoietin-2 amino acid sequence. The resulting peptide named GA3(WTIIQRREDGSVDFQRTWKEYK) was synthesized and labeled with iodine-125 at the C-terminal tyrosine residue to characterize its binding capability. In in vitro binding assays, GA3 can not only specifically bind to SMMC7721-Tie2 but also compete with angiopoietin-2 in binding. Via mouse tail vein injection, 125I-labeled GA3 was found to favorably accumulate in SPC-A1 xenograft tumor tissues which positively express Tie2. These results demonstrated that GA3 may be useful as a drug or gene delivery ligand for targeted chemotherapy, radiotherapy, and gene therapy.  相似文献   

8.
This study was designed to determine if soluble Tie2 (sTie2) expression inhibits and regresses corneal neovascularization, and if VEGF contributes to its effect. The corneas of BALB/c mice were scraped and the mice were injected with either an adenovirus expressing soluble Tie2 (Ad.sTie2) or an empty adenoviral vector. When injected at the inhibition timepoint (one day prior to corneal injury), the mean percentage of neovascularized corneal area two weeks later in Ad.sTie2-treated mice vs. controls was 56.37+/-9.15% vs. 85.79+/-3.55% (p=0.04). At the regression timepoint (4 weeks after corneal scrape), the mean area of corneal neovascularization in Ad.sTie2-treated mice was 42.89+/-4.74% vs. 75.01+/-3.22% in the control group (p=0.007). VEGF expression was significantly higher in Ad.sTie2-treated mice at the inhibition timepoint and there was no significant difference at the regression timepoint. These findings suggest that sTie2 inhibits and regresses corneal neovascularization in a VEGF-independent manner.  相似文献   

9.
Inhibition of tumor angiogenesis is an attractive target in cancer therapy. In this context, receptor tyrosine kinases play a pivotal role. Extensive efforts have been made to identify and develop small-molecule inhibitors of these central signaling proteins. Some of these compounds have already passed or are currently in clinical trials to investigate their applicability as anti-cancer drugs. However, the high expectations that are set in antiangiogenic therapy have not yet been accomplished. But there are also new and exciting opportunities for cancer treatment by combining antiangiogenic molecules with newly emerging therapeutics.  相似文献   

10.
The Tie2 receptor tyrosine kinase plays a pivotal role in vascular and hematopoietic development. The major intracellular signaling systems activated by Tie2 in response to Angiopoietin-1 (Ang1) include the Akt and Erk1/2 pathways. Here, we investigated the role of cholesterol-rich plasma membrane microdomains (lipid rafts) in Tie2 regulation. Tie2 could not be detected in the lipid raft fraction of human umbilical vein endothelial cells (HUVECs) unless they were first stimulated with Ang1. After stimulation, a minor fraction of Tie2 associated tightly with the lipid rafts. Treatment of HUVECs with the lipid raft disrupting agent methyl-β-cyclodextrin selectively inhibited Ang1-induced Akt phosphorylation, but not Erk1/2 phosphorylation. It has been reported that inhibition of FoxO activity is an important mechanism for Ang1-stimulated Tie2-mediated endothelial function. Consistent with this, we found that phosphorylation of FoxO mediated by Tie2 activation was attenuated by lipid raft disruption. Therefore, we propose that lipid rafts serve as signaling platforms for Tie2 receptor tyrosine kinase in vascular endothelial cells, especially for the Akt pathway.  相似文献   

11.
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.  相似文献   

12.
Angiopoietin-2 (Ang2) is a complex regulator of vascular remodeling that plays a role in both blood vessel sprouting and blood vessel regression through its receptor Tie2. Recombinant Chinese hamster ovary (rCHO) cell lines expressing a high level (20 microg/mL) of recombinant human Ang2 protein (rhAng2) with an amino-terminal FLAG-tag was constructed by transfecting the expression vectors into dihydrofolate reductase (dhfr)-deficient CHO cells and the subsequent gene amplification in medium containing stepwise increments in methotrexate level such as 0.02, 0.08, and 0.32 microM. The rhAng2 secreted from rCHO cells was purified at a purification yield of 53.6% from the cultured medium using an anti-FLAG M2 agarose affinity gel. SDS-PAGE and Western blot analyses showed that rCHO cells secret rhAng2 as a homodimeric glycoprotein form. Furthermore, rhAng2 binds to the Tie2 receptor and phosphorylates Tie2 in a concentration-dependent manner. Therefore, our rhAng2 could be useful for clarifying biological effect of exogenous Ang2 in the future.  相似文献   

13.
形成血管和淋巴管内层的内皮细胞是脉管系统的重要组成部分,并参与血管和淋巴系统疾病的发病机制。内皮细胞上的血管生成素(Angiopoietin,Ang)-具有免疫球蛋白和表皮生长因子同源性结构域的酪氨酸蛋白激酶(Tyrosine kinase receptors with immunoglobulin and EGF homology domains,Tie)轴是除了血管内皮生长因子受体途径外胚胎心血管和淋巴发育所必需的第二种内皮细胞特异性配体-受体信号传导系统。Ang-Tie轴参与调节产后血管生成与重塑、血管通透性和炎症,以维持血管平衡,因此,该系统在许多血管和淋巴系统疾病中发挥重要的作用。针对近年来Ang-Tie轴在血管和淋巴系统相关疾病中作用的研究进展,文中系统论述了Ang-Tie轴在炎症诱导的血管通透性、血管重塑、眼部新生脉管、剪切应力反应、动脉粥样硬化和肿瘤血管生成和转移中的作用,并总结了涉及Ang-Tie轴的相关治疗性抗体、重组蛋白和小分子药物。  相似文献   

14.
15.
16.
Angiogenesis process in development is temporally accurate, and involves sprouting, subsequent endothelial cell prolifer- ation, and migration. Tip cells, sensing the extracellular cues, play an important role in this process. Although it is known that several pathways including vascular endothelial growth factor (VEGF) and Notch control tip cell behaviors, the signaling process is largely unknown. Here we showed that an endothelial tyrosine kinase receptor-Tie2 was required for intersegmental vessel 0SV) growth and essen- tial for the sprouting, migration, and proliferation of tip cells with morpholino knockdown strategy in zebrafish. Knockdown of vegfeffectively reduced tie2 mRNA level, and tie2 knockdown efficiently blocked the vegf over-expression induced tyrosine kinase receptor-VEGFR1 (flkl) expression, which suggested that the function of Tie2 may be linked to the downstream of VEGF signaling pathway. Furthermore, we found that the embryos displayed normal ISV growth when injected with tie2 or vegf morpholino alone at a low dose, while co-knockdown of them resulted in a severe ISV defect, indicating a synergistic role in ISV formation. These observations demonstrate that Tie2 is an important regula- tor of tip cell behaviors. Moreover, these findings provide in vivo evidence that Tie2 acts coordinately with Vegf signal- ing to control angiogenesis.  相似文献   

17.
The cartilage vascularization and chondrocyte survival are essential for endochondral ossification which occurs in the process of antler growth. Angiopoietins (Ang) is a family of major angiogenic growth factors and involved in regulating the vascularization. However, the expression and regulation of Angs in the antler are still unknown. The aim of this study is to localize the expression of Ang-1, Ang-2 and their receptor Tie-2 in sika deer antler using in situ hybridization and focused on analyzing the regulation of testosterone, estrogen, all-trans-retinoic acid (ATRA) and 9cRA on their expression in antler chondrocytes. The results showed that Ang-1, Ang-2 and Tie-2 were highly expressed in antler chondrocytes. Administration of testosterone to antler chondrocytes led to a notable increase in the expression of Ang-1 and Tie-2, and a reduction in the expression of Ang-2. The similar result was also observed after estrogen treatment. In contrast, ATRA and 9cRA could inhibit the expression of Ang-1 in antler chondrocytes and heighten the expression of Ang-2. Simultaneously, ATRA could downregulate the expression of Tie-2 in antler chondrocytes at 12 and 24?h, while 9cRA upregulate the expression of Tie-2 at 3 and 6?h. Collectively, Ang-1, Ang-2 and Tie-2 are expressed in antler chondrocytes and their expression can be affected by testosterone, estrogen, ATRA and 9cRA.  相似文献   

18.
Erythropoietin (EPO) is an essential growth factor that regulates erythrocyte production in mammals. In this study, we demonstrate a novel role of EPO in regulating angiogenesis in vivo. Epo and Epo receptor (EpoR) are expressed in the vasculature during embryogenesis. Deletion of Epo or EpoR leads to angiogenic defects starting at E10.5, 2 days before ventricular hypoplasia and 3 days before the onset of the embryonic lethal phenotype. Overall, angiogenesis was severely affected in the mutant embryos: vascular anomalies included decreased complexity of the vessel networks. However, de novo vasculogenesis remained intact, consistent with the differential expression of Epo and EpoR during the early stages of embryonic development. The aforementioned angiogenesis defect can be partially rescued by expressing human EPO during embryogenesis. Moreover, Ang-1 expression is regulated by EPO/EPOR under normoxic conditions. Taken together, our results suggest important roles of EPO and EPOR in angiogenesis.  相似文献   

19.
Angiogenesis is a regulated process involving the proliferation, migration, and remodeling of different cell types particularly mature endothelial and their progenitor cells, nominated as endothelial progenitor cells (EPCs). Tie2/Tek is a tyrosine kinase receptor expressed by endothelial cells that induces signal transduction pathways involved in endothelial biology. To address the potential importance of the various tyrosine residues of Tie2 in EPC development, we generated a series of Tie2 tyrosine mutated (Y1106F, Y1100F, and Y1111F) EPCs and then assess the biological features of these cells. Clonogenic, tubulogenic, proliferative, migratory, and functional properties of these cells were analyzed. Next, GFP-positive EPCs containing Tie2 tyrosine mutations were systemically transplanted into sublethaly irradiated mice to analyze the potency of these cells for marrow reconstitution. We found that mutation in the Tie2 tyrosine 1106 residue directed EPCs toward a mature endothelial phenotype, which was associated with augmented tubulogenic and migratory properties, and increased phosphorylation of the active site (tyrosine 992) as well as increased vascular perfusion in the in vivo Matrigel plug assay. Moreover, transplantation of 1106 Tie2 mutant EPCs failed to reconstitute the bone marrow after myeloablation, whereas transplantation of EPCs with the 1100 or 1111 Tie2 tyrosine mutation resulted in bone marrow engraftment, leading to improved survival of recipient mice. Our findings demonstrate that the tyrosine 1106 residue in Tie2 plays a key role to maintain the stemness features of EPCs.  相似文献   

20.
Structural analysis of receptor tyrosine kinases   总被引:11,自引:0,他引:11  
Receptor tyrosine kinases (RTKs) are single-pass transmembrane receptors that possess intrinsic cytoplasmic enzymatic activity, catalyzing the transfer of the γ-phosphate of ATP to tyrosine residues in protein substrates. RTKs are essential components of signal transduction pathways that affect cell proliferation, differentiation, migration and metabolism. Included in this large protein family are the insulin receptor and the receptors for growth factors such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor. Receptor activation occurs through ligand binding, which facilitates receptor dimerization and autophosphorylation of specific tyrosine residues in the cytoplasmic portion. The phosphotyrosine residues either enhance receptor catalytic activity or provide docking sites for downstream signaling proteins. Over the past several years, structural studies employing X-ray crystallography have advanced our understanding of the molecular mechanisms by which RTKs recognize their ligands and are activated by dimerization and tyrosine autophosphorylation. This review will highlight the key results that have emerged from these structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号