首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of the study was to investigate the role of Umbelliferone (UMB) on lipid peroxidation, nonenzymic and enzymic antioxidants in the plasma and liver of streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 180-200 g, were induced diabetes by administration of STZ (40 mg/kg b.wt.) intraperitoneally. The normal and diabetic rats were treated with UMB (30 mg/kg b.wt.) dissolved in 10% dimethyl sulfoxide (DMSO) for 45 days. Diabetic rats had an elevation in the levels of lipid peroxidation markers (thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD)), and a reduction in nonenzymic antioxidants (vitamin C and reduced glutathione (GSH) except vitamin E in the plasma and liver, and enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in the liver. Decreased level of beta-carotene and increased level of ceruloplasmin (Cp) were observed in the plasma of diabetic rats. Treatment with UMB and glibenclamide brought back lipid peroxidation markers, nonenzymic and enzymic antioxidants to near normalcy. Since UMB treatment decreases lipid peroxidation markers and enhances antioxidants' status it can be considered as a potent antioxidant.  相似文献   

2.
This study was conducted to determine the effects of vitamin C (L-ascorbic acid) and vitamin E (alpha-tocopherol acetate) on serum concentrations of lipid peroxidation (MDA) and triiodothyronine (T3), thyroxine (T4), adrenocorticotropic hormone (ACTH), and some metabolite and mineral in laying hens reared at high ambient temperatures ranging from 25 degrees C to 35 degrees C. One hundred twenty laying hens (18 wk old; Hy-Line) were divided into 4 groups, 30 hens per group. The laying hens were fed either a basal diet (control) or the basal diet supplemented with either 250 mg of L-ascorbic acid/kg of diet (vitamin C), 250 mg of alpha-tocopherol acetate/kg of diet (vitamin E), or 250 mg of L-ascorbic acid plus 250 mg alpha-tocopherol acetate/kg of diet (combination). Separately or as a combination vitamins C and E increased serum vitamin C and vitamin E concentrations (p < 0.001) but decreased serum MDA concentration (p < 0.05). Serum concentrations of vitamin E and vitamin C were found highest but serum MDA concentration was lowest in the combination group. Supplemental vitamins C and E either separately or in a combination increased serum T3 and T4 concentrations (p < 0.05), whereas decreased serum ACTH concentration (p < 0.01). Serum glucose and cholesterol concentrations decreased, whereas serum protein concentration increased (p < 0.05) when vitamins C and E singly or together were added to the diet. Vitamin C and vitamin E supplementation resulted in an increase in serum concentrations of Ca, P, and K (p < 0.01) but a decrease in serum concentration of Na (p < 0.05). The results of the present study suggest that supplemental vitamin C and vitamin E alter serum lipid peroxidation, vitamin C, vitamin E and metabolite status, and diets supplemented with a combination of these two vitamins offer a good management practice in laying hens reared at high temperatures. In addition, the results suggest that dietary vitamin C and vitamin E act synergistically.  相似文献   

3.
Oxidative stress is currently hypothesized to be a mechanism underlying diabetes. The present study was designed to evaluate the effect of umbelliferone (UMB), a derivative of coumarin, on erythrocyte lipid peroxidation, antioxidants, and lipid profile in normal and streptozotocin (STZ) diabetic rats. Diabetes was induced in adult male albino rats of Wistar strain, weighing 180 to 200 g, by the administration of STZ (40 mg/kg/b-wt) intraperitonially. The normal and diabetic rats were treated with UMB in 10 percent dimethyl sulfoxide (DMSO) dissolved in water for 45 days. The diabetic rats had elevated levels of blood glucose and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD), and lipid hydroperoxide (HP) and decreased levels of nonenzymatic antioxidants (Vitamin C and reduced glutathione [GSH]), elevated levels of vitamin E, and elevated levels of enzymatic antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]), elevated glucose-6-phosphate dehydrogenase activity, and altered lipid profile (cholesterol and phospholipids) in erythrocytes. These changes were reversed by treatment with UMB. Thus, our results indicate that the administration of UMB shows promising potential for the restoration of normal blood glucose levels, erythrocyte lipid peroxidation, antioxidants, and lipid profile in STZ-diabetic.  相似文献   

4.
We investigated the effects of vitamin E and topiramate (TPM) administrations on pentylentetrazol (PTZ)–induced blood and brain toxicity in rats. Forty rats were randomly divided into five equal groups. The first and second groups were used for the control and PTZ groups, respectively. Fifty or 100 mg TPM were administered to rats constituting the third and fourth groups for 7 days, respectively. The TPM and vitamin E combination was given to animals in the fifth group. At the end of 7 days, all groups except the first received a single dose of PTZ. Blood and brain samples were taken at 3 hrs after PTZ administration. Lipid peroxidation levels of plasma, erythrocyte, brain cortex and brain microsomal fraction; nitric oxide levels of serum; and the number of spikes and epileptiform discharges of the EEG were increased by PTZ administration. Plasma and brain vitamin E concentration, erythrocyte glutathione peroxidase (GSH-Px) activity and latency to first spike of the EEG were decreased by PTZ. Plasma lipid peroxidation levels in the third group and plasma and erythrocyte lipid peroxidation levels in the fifth group were decreased compared to the second group, whereas brain vitamin C, vitamin E, erythrocyte GSH-Px and reduced glutathione (GSH) values increased in the fifth group. Brain microsomal GSH levels and EEG records in the third, fourth and fifth groups were restored by the TPM and vitamin E treatment. In conclusion, TPM and vitamin E seems to have protective effects on PTZ-induced blood and brain toxicity by inhibiting free radicals and supporting the antioxidant redox system.  相似文献   

5.
Two major lines of defense exist against oxidant lung injury: tissue antioxidants and antioxidant enzymes. We studied pretreatment with the antioxidants, vitamin E and butylated hydroxyanisole (BHA), and the antioxidant enzymes, superoxide dismutase (SOD) and catalase, in rabbits exposed to 100% O2 for 48 h. BHA (200 mg/kg ip) or vitamin E (50-100 mg/kg po) were given for 2 or 3 days, respectively, before O2 exposure. Combined therapy with polyethylene glycol- (PEG) conjugated SOD (12 mg/kg) and catalase (200,000 U/kg) was given intraperitoneally 1 h before and 24 h after beginning 100% O2. Hyperoxia significantly increased the pulmonary content of malondialdehyde, indicating enhanced lipid peroxidation. One hundred percent O2 also increased lung weight gain and alveolar-capillary permeability to aerosolized 99mTc-labeled diethylenetriaminepentaacetate (99mTc-DTPA, 500 mol wt) and fluorescein isothiocyanate-labeled dextran (7,000 mol wt). Pretreatment with vitamin E, BHA, or the combination of PEG-SOD and PEG-catalase prevented the increase in malondialdehyde, lung weight gain, and alveolar-capillary permeability caused by hyperoxia. These results indicate that augmenting either tissue antioxidants or antioxidant enzymes can prevent the pulmonary injury caused by 48 h of 100% O2 in rabbits.  相似文献   

6.
This study investigated effects of dietary supplementation with vitamin C, vitamin E on performance, biochemical parameters, and oxidative stress induced by copper toxicity in broilers. A total of 240, 1-day-old, broilers were assigned to eight groups with three replicates of 10 chicks each. The groups were fed on the following diets: control (basal diet), vitamin C (250 mg/kg diet), vitamin E (250 mg/kg diet), vitamin C + vitamin E (250 mg/kg?+?250 mg/kg diet), and copper (300 mg/kg diet) alone or in combination with the corresponding vitamins. At the 6th week, the body weights of broilers were decreased in copper, copper + vitamin E, and copper + vitamin C + vitamin E groups compared to control. The feed conversion ratio was poor in copper group. Plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activities, iron, copper concentrations, and erythrocyte malondialdehyde were increased; plasma vitamin A and C concentrations and erythrocyte superoxide dismutase were decreased in copper group compared to control. Glutathione peroxidase, vitamin C, and iron levels were increased; aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and copper levels were decreased in copper + vitamin C group, while superoxide dismutase, glutathione peroxidase, and vitamin E concentrations were increased; aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were decreased in copper with vitamin E group compared to copper group. The vitamin C concentrations were increased; copper, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and malondialdehyde were decreased in copper + vitamin C + vitamin E group compared to copper group. To conclude, copper caused oxidative stress in broilers. The combination of vitamin C and vitamin E addition might alleviate the harmful effects of copper as demonstrated by decreased lipid peroxidation and hepatic enzymes.  相似文献   

7.
In the present study, the protective effect of curcumin against sodium fluoride-induced nephrotoxicity was evaluated in rats. Renal injury was induced by daily administration of 600 ppm sodium fluoride in drinking water for 1 week. One week before the administration of fluoride, the animals selected as study group were given curcumin (10 and 20 mg/kg body weight, intraperitoneally). After 1 week, lipid peroxidation level, activities of superoxide dismutase, catalase, and level of glutathione in kidney homogenate were measured. Blood serum samples were examined for creatinine, serum urea, and blood urea nitrogen levels. Another group of rats received vitamin C (10 mg/kg) as standard antioxidant. The results show that curcumin and vitamin C treatment prior to fluoride administration normalized the levels of serum creatinine, serum urea, and blood urea nitrogen. Moreover, curcumin and vitamin C administrations prevented the antioxidant enzyme decreasing and lipid peroxidation levels imbalance. In conclusion, curcumin treatment at the doses of 10 and 20 mg/kg (intraperitoneally) showed significant nephroprotective effects.  相似文献   

8.
The prevalence of insulin resistance syndrome increases during menopause with the overproduction of reactive oxygen species and impairment of the free radical scavenger function. Therefore, we investigated the effects of 17β-estradiol (E(2)) and vitamin E, as an antioxidant, on lipid peroxidation and antioxidant levels in the brain cortex and liver of ovariectomized rats as well as on insulin resistance in those rats. Forty female Sprague-Dawley rats, 3?months of age and weighing 231.5?± 9.4 g, were divided into 4 groups: sham, ovariectomized (OVX), OVX treated with E(2) (40 μg/kg subcutaneously), and OVX treated with E(2) and vitamin E (100?mg/kg intraperitoneally). The 4 groups received the appropriate treatment every day for 8?weeks. Levels of glutathione, glutathione peroxidase, superoxide dismutase , catalase, and malondialdehyde in the brain cortex and liver of ovariectomized rats were measured. Also, fasting plasma insulin, glucose, and homeostatis model assessment of insulin resistance (HOMA-IR) were determined. Malondialdehyde increased and antioxidants (glutathione, glutathione peroxidase, catalase, superoxide dismutase) decreased in the brain cortex and liver of OVX rats. Also, fasting glucose, insulin, and HOMA-IR increased in OVX rats. E(2) and E(2) plus vitamin E decreased malondialdehyde and increased antioxidants in the brain cortex and liver of OVX rats. Moreover, they decreased fasting glucose, insulin, and HOMA-IR in ovariectomized rats. This study demonstrates that E(2) and E(2) plus vitamin E supplementation to OVX rats may improve insulin resistance, strengthen the antioxidant system, and reduce lipid peroxidation.  相似文献   

9.
We investigated the chemopreventive potential of luteolin on hepatic and circulatory lipid peroxidation and antioxidant status during 1,2-dimethylhydrazine induced colon carcinogenesis in rats. Rats were given a weekly subcutaneous injection of DMH at a dose of 20 mg/kg body weight for 15 weeks. Luteolin (0.2 mg/kg body weight/everyday p.o.) was given at the initiation and also at the postinitiation stages of carcinogenesis to DMH treated rats. The animals were sacrificed at the end of 30 weeks. Enhanced lipid peroxidation in the liver and circulation of tumor bearing rats was accompanied by a significant decrease in the levels of plasma and hepatic reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), vitamin C, vitamin E and beta-carotene in DMH treated rats as compared to the control rats. Intragastric administration of luteolin (0.2mg/kg body weight) to DMH-treated rats significantly reduced the incidence and size of tumor in the colon, reduced lipid peroxidation levels and enhanced the plasma and hepatic activities of GSH, GPx, GST, GR, SOD, CAT, vitamin C, vitamin E and beta-carotene. Thus the chemopreventive efficacy of luteolin against colon carcinogenesis is evidenced by our preliminary studies which showed decreased incidence of tumors and the antiperoxidative and antioxidant effect of luteolin. Further study on the exact mechanism of action of luteolin in preventing colon carcinogenesis is yet to be elucidated.  相似文献   

10.
In this study, the effect of ascorbic acid (vitamin C), Dl-α-tocopherol acetate (vitamin E), and sodium selenate (selenium) on ethanol-induced gastric mucosal injury in rats was investigated morphologically and biochemically. The gastric mucosal injury was produced by administration of 1 mL of absolute ethanol to each rat. Animals received vitamin C (250 mg/kg), vitamin E (250 mg/kg), and selenium (0.5 mg/kg) for 3 d 1 h prior to the administration of absolute ethanol. In gastric mucosa of rats given ethanol according to control groups, neuronal nitric oxide expression decreased. This immunoreactivity was much lower in the group given ethanol+vitamin C+vitamin E+selenium than the control group and the ethanol-induced group. Scanning electron microscopic evaluation of the ethanol-induced group, when compared to control groups, revealed degenerative changes in gastric mucosa, whereas a good arrangement in surface topography of gastric mucosa in the group given ethanol + vitamin C+vitamin E + selenium was observed. In the group administered ethanol, a reduction of the stomach glutathione (GSH) and serum total protein levels and increases in serum sialic acid, triglycerides, and stomach lipid peroxidation (LPO) levels were observed. Vitamin C+vitamin E+Se administration to alcohol-treated rats significantly increased the serum total protein, triglyceride levels, and stomach GSH levels and significantly lowered the levels of serum sialic acid and stomach LPO compared to untreated alcohol-supplemented rats. As a result of these findings, we can say that the combination of vitamin C, vitamin E, and selenium has a protective effect on ethanol-induced gastric mucosal injury of rats.  相似文献   

11.
Red blood cells (RBC) from normal and vitamin E-deficient rats were incubated in a hypertonic solution of reduced glutathione adjusted to pH 8. Methemoglobin formation occurred in intact RBC from both normal and vitamin E-deficient rats. Hemolysis was significantly greater in RBC from vitamin E-deficient rats. Experiments with catalase, superoxide dismutase, and methional showed that H(2)O(2) was the primary extracellular source of oxidant stress. Extracellular superoxide and hydroxyl radical were not involved in oxidant stress. Experiments with dimethyl sulfoxide showed that intracellular hydroxyl radical, generated from H(2)O(2), was the hemolytic agent. Neither methemoglobin formation nor lipid peroxidation involved hydroxyl radical. Indeed, lipid peroxidation and hemolysis in RBC from vitamin E-deficient rats were concurrent rather than consecutive events. Phase contrast microscopy showed that rigid, crenated RBC with a precipitate around the interior periphery formed during glutathione-induced oxidant stress. The precipitate dissolved slowly as the crenated RBC were converted to smooth ghosts. It appeared that protein precipitates involving mixed disulfide bonds were reduced and solubilized when extracellular glutathione penetrated the ruptured cell. Comparisons between normal RBC and vitamin E-deficient RBC suggest that vitamin E has little effect on the inward diffusion of extra-cellular H(2)O(2). Vitamin E apparently interacts with different oxidant species derived from intracellular H(2)O(2) in preventing lipid peroxidation and the sulfhydryl group oxidation leading to hemolysis.  相似文献   

12.
The objective of this work was to examine the time-dependent pro-oxidant versus antioxidant effect of various doses of vitamin E used commonly in experimental studies. Erythrocyte activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and plasma lipid peroxidation levels were investigated following biweekly intramuscular administration of 100, 300 and 600 mg/kg of vitamin E at a baseline time point, and additionally at 2, 4 and 6 weeks after initiating treatment. Vitamin E had an antioxidant effect when administered at low doses over short time periods, and increased the activity of antioxidant enzymes. At higher doses and over longer time periods, it increased the level of lipid peroxidation, and attenuated the activity of antioxidant enzymes. These results suggest that time-dependent variations in vitamin E effects should be considered in design and interpretation of experimental antioxidant studies, as well as during clinical trials.  相似文献   

13.
Dietary treatment with three diets differing in vitamin E, Low E (15 mg of vitamin E/kg diet), Medium E (150 mg/kg), or High E (1,500 mg/kg), resulted in guinea pigs with low (but nondeficient), intermediate, or high heart a-tocopherol concentration. Neither the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and reductase, nor the nonenzymatic antioxidants, GSH, ascorbate, and uric acid were homeostatically depressed by increases in heart a-tocopherol. Protection from both enzymatic (NADPH dependent) and nonenzymatic (ascorbate-Fe2+) lipid peroxidation was strongly increased by vitamin E supplementation from Low to Medium E Whereas no additional gain was obtained from the Medium E to the High E group. The GSH/GSSG and GSH/total glutathione ratios increased as a function of the vitamin E dietary concentration closely resembling the shape of the dependence of heart a-tocopherol on dietary vitamin E. The results show the capacity of dietary vitamin E to increase the global antioxidant capacity of the heart and to improve the heart redox status in both the lipid and water-soluble compartments. This capacity occurred at levels six times higher than the minimum daily requirement of vitamin E, even in the presence of optimum dietary vitamin C concentrations and basal unstressed conditions. The need for vitamin E dietary supplementation seems specially important in this tissue due to the low constitutive levels of endogenous enzymatic and nonenzymatic antioxidants present of the mammalian heart in comparison with those of other internal organs.  相似文献   

14.
The antioxidant activity of tannoid active principles of E. officinalis consisting of emblicanin A (37%), emblicanin B (33%), punigluconin (12%) and pedunculagin (14%), was investigated on the basis of their effects on rat brain frontal cortical and striatal concentrations of the oxidative free radical scavenging enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and lipid peroxidation, in terms of thiobarbituric acid-reactive products. The results were compared with effects induced by deprenyl, a selective monoamine oxidase (MAO) B inhibitor with well documented antioxidant activity. The active tannoids of E. officinalis (EOT), administered in the doses of 5 and 10 mg/kg, i.p., and deprenyl (2 mg/kg, i.p.), induced an increase in both frontal cortical and striatal SOD, CAT and GPX activity, with concomitant decrease in lipid peroxidation in these brain areas when administered once daily for 7 days. Acute single administration of EOT and deprenyl had insignificant effects. The results also indicate that the antioxidant activity of E. officinalis may reside in the tannoids of the fruits of the plant, which have vitamin C-like properties, rather than vitamin C itself.  相似文献   

15.
This study was designed to evaluate and compare the effect of melatonin, vitamin E and L-carnitine on brain and liver oxidative stress and liver damage. Oxidative stress and hepatic failure were produced by a single dose of thioacetamide (TAA) (150 mg kg(-1)) in Wistar rats. A dose of either melatonin (3 mg kg(-1)) vitamin E (20 mg kg(-1) ) or L-carnitine (100 mg kg(-1)) was used. Blood samples were taken from the neck vasculature in order to determine ammonium, blood urea nitrogen (BUN) and liver enzymes. Lipid peroxidation products, glutathione (GSH) content and antioxidative enzymes were determined in cerebral and hepatic homogenates. The results showed a decrease in BUN and in the antioxidant enzymes activities and GSH in the brain and liver. Likewise, TAA induced significant enhancement of lipid peroxidation products levels in both liver and brain, as well as in ammonia values. Melatonin, vitamin E and L-carnitine, although melatonin more significantly, decreased the intensity of the changes produced by the administration of TAA alone. Furthermore melatonin combined with TAA, decreased the ammonia levels and increased the BUN values compared with TAA animals. Also it was more effective than vitamin E or L-carnitine in these actions. These data show the protective effect of these agents, especially melatonin, against oxidative stress and hepatic damage present in fulminant hepatic failure.  相似文献   

16.
Arsenic (As) exerts oxidative stress with depletion of body selenium in monogastric animals. But in ruminants this fact is not yet verified. Vitamin E is an effective dietary antioxidant. Thus, in this experiment, the protective effect of vitamin E against arsenic toxicity induced by sodium arsenite (60 mg As/kg diet) was investigated in goat kids. For this, 21 male kids were divided into three equal groups and fed either basal diet as such (control), or supplemented with 60 mg As/kg diet and 60 mg As/kg diet + 250 IU vitamin E/kg diet for 180 days. Vitamin E supplementation alleviated the toxic effects caused by arsenic on serum alanine aminotransferase and aspartate aminotransferase and lipid peroxidation. It also prevented the depletion of reduced glutathione content and reduction in activity of catalase, superoxide dismutase and glutathione-s-transferase in erythrocytes resulted from arsenic intoxication. The elevated levels of arsenic and reduced levels of selenium in the serum and tissues in arsenic treated animals were attenuated by vitamin E supplementation, though not completely. However, serum cortisol level was not affected by arsenic. It was concluded that arsenic exerts cortisol independent stressor mechanism and supplementation of vitamin E at a level of 250 IU/kg diet was partially effective in reducing tissue accumulation of arsenic in the body and protect the kids from oxidative stress induced by arsenic.  相似文献   

17.
Lipid peroxidation has been proposed as a mechanism of 3-methylindole pneumotoxicity. In this report, lipid peroxidation was measured over 16 h in awake rats given 400 mg/kg i.p. 3-methylindole or its carrier, Cremophore EL. Rats were studied after 8 weeks of feeding a diet either adequate or deficient in vitamin E and selenium. Respiratory ethane production was used as the index of lipid peroxidation. 3-methylindole had no effect on lipid peroxidation for rats fed the adequate diet. For rats on the deficient diet, 3-methylindole suppressed lipid peroxidation by 50% of control. These results indicate that lipid peroxidation is not a mechanism of 3-methylindole pneumotoxicity and support the conclusion that 3-methylindole may act as an antioxidant.  相似文献   

18.
Carnosine (beta-alanyl-L-histidine) injected to intact albino rats (20 mg/kg body weight) induces depletion of lipid peroxidation (LPO) products in brain and blood serum, an increase of superoxide scavenging activity in brain and serum, decrease of cholesterol: phospholipid ratio and increase of easy oxidizable phospholipid portion in brain lipid extracts. After painful stress (footshock during 2 hours) LPO products are accumulated in brain and serum, cholesterol: phospholipid ratio increases and the portion of easy oxidizable phospholipids decreases. Carnosine given before stress prevents LPO activation. Effects of carnosine and stress are not additive: LPO inhibition induced by carnosine is much more in rats subjected to stress.  相似文献   

19.
Abstract

The objective of this work was to examine the time-dependent pro-oxidant versus antioxidant effect of various doses of vitamin E used commonly in experimental studies. Erythrocyte activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and plasma lipid peroxidation levels were investigated following biweekly intramuscular administration of 100, 300 and 600 mg/kg of vitamin E at a baseline time point, and additionally at 2, 4 and 6 weeks after initiating treatment. Vitamin E had an antioxidant effect when administered at low doses over short time periods, and increased the activity of antioxidant enzymes. At higher doses and over longer time periods, it increased the level of lipid peroxidation, and attenuated the activity of antioxidant enzymes. These results suggest that time-dependent variations in vitamin E effects should be considered in design and interpretation of experimental antioxidant studies, as well as during clinical trials.  相似文献   

20.
Mitigation of lindane induced toxicity in testis of Swiss mice by combined treatment with vitamin C, vitamin E and alpha-lipoic acid has been evaluated. Male healthy mice (40), 8-10 weeks old were randomly selected and divided into 4 groups, control (C); lindane (L); antioxidant (A) and antioxidant plus lindane (A+L). Group C animals were administered only the vehicle (olive oil); in group L lindane was administered orally at a dose of 40 mg/kg body wt.; in group A combination of antioxidants at a dose of 125 mg/kg body wt.(vitamin C: 50 mg/kg body wt., vitamin E: 50 mg/kg body wt. and alpha-lipoic acid: 25 mg/kg body wt.) was administered orally; in group A+L both antioxidants (125 mg/kg body wt.) and lindane (40 mg/kg body wt.) were administered at their respective doses. In group A+L antioxidants were administered 1 h prior to lindane administration. All treatments were continuously given for 60 days. Histopathological changes due to lindane intoxication indicated shrunken and distorted seminiferous tubules, sparse Leydig cells and blood vessels and atrophy in the tissue. The testis weight also decreased significantly. Lindane treated group showed increased lipid peroxidation, whereas glutathione, glutathione peroxidase, superoxide dismutase, catalase and protein were significantly decreased compared to control. Lindane induced damage was minimized by administration of antioxidants. Results suggest that combined pretreatment with antioxidants can alleviate the damage caused to testis by lindane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号