首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the plant plasma membrane H+-ATPase is tightly regulated via phosphorylation and binding of 14-3-3 protein to the C-terminus of the pump. Whereas the 14-3-3-binding mechanism has been described in detail, the identity of specific protein kinases and phosphatases involved in the control of 14-3-3 binding has remained elusive. Using the yeast two-hybrid system, GST pull-down assays and overlay experiments, we report that scaffolding subunit A of protein phosphatase 2A (PP2A-A) interacts with the C-terminus of the Arabidopsis plasma membrane H+-ATPase isoform 2. PP2A-A binding is inhibited in the presence of 14-3-3 protein and fusicoccin, a fungal toxin which induces binding of 14-3-3 protein to the C-terminal end of the plasma membrane H+-ATPase. This indicates that PP2A-A and 14-3-3 protein compete with each other for binding to the same region in the C-terminus of the H+-ATPase.  相似文献   

2.
Abstract: A putative consensus domain for binding of 14-3-3 proteins to the plasma membrane (PM) H+-ATPase was identified in the highly-conserved sequence RSR(p)SWSF [where (p)S is Ser776 of the maize isoform MHA2], localized in the cytosolic stretch connecting transmembrane segments 8 and 9. A 15 amino acid biotinylated phosphopeptide comprising this motif: i) bound a recombinant 14-3-3 protein, ii) inhibited fusicoccin-induced stimulation of the PM H+-ATPase activity both in PM isolated from germinating radish ( Raphanus sativus L.) seedlings and in ER isolated from Saccharomyces cerevisiae expressing AHA1 (an isoform of Arabidopsis thaliana PM H+-ATPase), and iii) inhibited fusicoccin binding to PM isolated from germinating radish seedlings. The corresponding non-phosphorylated peptide was inactive in all the performed assays. Together, these results suggest that the cytosolic strand connecting transmembrane segments 8 and 9 of the PM H+-ATPase is a 14-3-3 binding site which might cooperate with the C-terminal domain of the'enzyme in generating a stable association between the H+-ATPase and 14-3-3 protein.  相似文献   

3.
Modulation of proton extrusion and ATP-dependent H+ transport through the plasma membrane in relation to the presence of 14-3-3 proteins in this membrane in response to osmotic shock was studied in tomato ( Lycopersicon esculentum Mill. cv. Pera) cell cultures. In vivo H+ extrusion by cells was activated rapidly and significantly after adding 100 m M NaCl, 100 m M KCl, 50 m M Na2SO4, 1.6% sorbitol or 2 µ M fusicoccin to the medium. The increase in H+ extrusion by cells treated with 100 m M NaCl was correlated with an increase of H+ transport by the plasma membrane H+-ATPase (EC 3.6.1.35), but not with changes in ATP hydrolytic activity of this enzyme, suggesting an increased coupling ratio of the enzyme. Immunoblot experiments showed increased amounts of 14-3-3 proteins in plasma membrane fractions isolated from tomato cells treated with 100 m M NaCl as compared to control cells without changing the amount of plasma membrane H+-ATPase. Together, these data indicate that in tomato cells an osmotic shock could enhance coupling between ATP hydrolysis and proton transport at the plasma membrane through the formation of a membrane 14-3-3/H+-ATPase complex.  相似文献   

4.
White lupin ( Lupinus albus L.) is able to grow on soils with sparingly available phosphate (P) by producing specialized structures called cluster roots. To mobilize sparingly soluble P forms in soils, cluster roots release substantial amounts of carboxylates and concomitantly acidify the rhizosphere. The relationship between acidification and carboxylate exudation is still largely unknown. In the present work, we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation increased transiently and reached a maximum after 5 h. This effect was accompanied by a strong acidification of the external medium and alkalinization of the cytosol, as evidenced by in vivo nuclear magnetic resonance (NMR) analysis. Fusicoccin, an activator of the plasma membrane (PM) H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of the LHA1 PM H+-ATPase gene, an increased amount of H+-ATPase protein, a shift in pH optimum of the enzyme and post-translational modification of an H+-ATPase protein involving binding of activating 14-3-3 protein. Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton efflux.  相似文献   

5.
PPI1 (proton pump interactor isoform 1) is a novel protein able to interact with the C-terminal autoinhibitory domain of the Arabidopsis thaliana plasma membrane (PM) H+-ATPase. In vitro, PPI1 binds the PM H+-ATPase in a site different from the known 14-3-3 binding site and stimulates its activity. In this study, we analysed the intracellular localisation of PPI1. The intracellular distribution was monitored in A. thaliana cultured cells by immunolocalisation using an antiserum against the PPI1 N-terminus and in Vicia faba guard cells and epidermal cells by transient expression of a GFP::PPI1 fusion. The results indicate that the bulk of PPI1 is localised at the endoplasmic reticulum, from which it might be recruited to the PM for interaction with the H+-ATPase in response to as yet unidentified signals.  相似文献   

6.
The regulation of the H+-ATPase of plasma membrane is a crucial point in the integration of transport processes at this membrane. In this work the regulation of H+-ATPase activity induced by changes in turgor pressure was investigated and compared with the stimulating effect of fusicoccin (FC). The exposure of cultured cells of Arabidopsis thaliana L. (ecotype Landsberg 310–14-2) to media containing mannitol (0. 15 or 0. 3 M ) or polyethylene glycol 6000 (PEG) (15. 6% or 22% w/v) resulted in a decrease in the turgor pressure of the cells and in a strong stimulation of H+ extrusion in the incubation medium. The osmotica-induced H+ extrusion was (1) inhibited by the inhibitor of plasma membrane H+-ATPase, erythrosin B (EB), (2) dependent on the external K+ concentration, (3) associated with a net K+ influx, and (4) lead to an increase of cellular malate content. These results show that the reduction of external osmotic potential stimulates the activity of plasma membrane H+-ATPase
The effect of mannitol was only partially inhibited by treatments with cycloheximide (CH) and cordycepin, which block protein and mRNA synthesis, respectively. All the effects of osmotica were qualitatively and quantitatively similar to those induced by 5 μ M FC. However, when FC and mannitol (or PEG) were fed together, their effects on H+ extrusion appeared synergistic, irrespective of whether FC was present at suboptimal or optimal concentrations. This behaviour suggests that the modes of action of FC and of the osmotica on H+-ATPase activity differ at least in some step(s)  相似文献   

7.
The plasma membrane H+-ATPase from the fission yeast Schizosaccharomyces pombe does not support growth of H+-ATPase-depleted cells of the budding yeast Saccharomyces cerevisiae , even after deletion of the enzyme's carboxy terminus. Functional chimerical H+-ATPase proteins in which appropriate regions of the S. pombe enzyme were replaced with their S. cerevisiae counterparts were generated by in vivo gene recombination. Site-directed mutagenesis of the H+-ATPase chimeras showed that a single amino acid replacement, tyrosine residue 596 by alanine, resulted in functional expression of the S. pombe H+-ATPase. The reverse Ala-598 →Tyr substitution was introduced into the S. cerevisiae enzyme to better understand the role of this alanine residue. However, no obvious effect on ATPase activity could be detected. The S. cerevisiae cells expressing the S. pombe H+-ATPase substituted with alanine were enlarged and grew more slowly than wild-type cells. ATPase activity showed a more alkaline pH optimum, lower K m values for MgATP and decreased V max compared with wild-type S. cerevisiae activity. None of these kinetic parameters was found to be modified in glucose-starved cells, indicating that the S. pombe H+-ATPase remained fully active. Interestingly, regulation of ATPase activity by glucose was restored to a chimera in which the S. cerevisiae sequence spans most of the catalytic site.  相似文献   

8.
The electrical response of Zea mays protoplasts to different auxins and to antibodies raised against an ER-located auxin binding protein from maize (Zm-ERabp1), was investigated using the patch-clamp technique (whole-cell configuration). Following a lag-phase of 30–40 seconds, indole-3-acetic acid and 1-naphthylacetic acid induced an outwardly directed current of positive charge in a concentration-dependent manner. This current was further increased by the fungal toxin fusicoccin (FC). The current was observed only in the presence of Mg2+-ATP in the patch-pipette and was abolished after addition of erythrosin B, an inhibitor of H+-ATPase, to the protoplasts indicating that the plasma membrane H+-ATPase is activated by auxins and fusicoccin. Addition of antibodies directed against Zm-ERabp1 abolished the current induced by auxins, without affecting the response of protoplasts to fusicoccin. Antibodies directed against a peptide representing part of the putative auxin binding domain of Zm-ERabp1 showed auxin agonist activity, stimulating an outwardly directed membrane current in the absence of auxin. These results suggest that (i) Zm-ERabp1 or antigenically related proteins represent a site for auxin perception through which the plasma membrane H+-ATPase is activated, and (ii) that the activation of the H+-ATPase by such proteins is initiated from outside the plasma membrane.  相似文献   

9.
Sugar beet ( Beta vulgaris L.) root suspension-cultured cells were converted to protoplasts which responded to fusicoccin (FC) by a rise in cytoplasmic pH (pHcyt) averaging 0.25 units in the fluorimetric assay. This effect was blocked by erythrosin B, a specific inhibitor of the plasma membrane H+-ATPase. A protein kinase inhibitor, staurosporine also caused cytosolic alkalinization that was sensitive to H+-ATPase inhibitors. Most strikingly, the effect of staurosporine was suppressed by fusicoccin and vice versa. Addition of okadaic acid, entailing overall protein phosphorylation, also led to H+-ATPase activation, whereupon fusicoccin lost its effect on proton transport. In parallel, kinetic and inhibitor analyses demonstrated that FC binding to the protoplast plasma membrane involved two sites with dissociation constants of 1 n M and 0.2 μ M and was indifferent to phosphorylation and dephosphorylation inhibitors. Thus, it could be concluded that (1) the effect of FC on cytoplasmic pH probably depends on the phosphorylation state of plasma membrane proteins and may have either sign; (2) the activation of H+-ATPase by FC most likely proceeds directly through conformational receptor-enzyme interaction.  相似文献   

10.
Plasma membrane vesicles were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots in an aqueous polymer two-phase system. The plasma membranes possessed high specific ATPase activity [ca 4 μmol P1 (mg protein)−1 min−1 at 37°C]. Addition of lysophosphatidylcholine (lyso-PC) produced a 2–3 fold activation of the plasma membrane ATPase, an effect due both to exposure of latent ATP binding sites and to a true activation of the enzyme. Lipid activation increased the affinity for ATP and caused a shift of the pH optimum of the H+ -ATPase activity to 6.75 as compared to pH 6.45 for the negative H+-ATPase. Activation was dependent on the chain length of the acyl group of the lyso-PC, with maximal activition obtained by palmitoyl lyso-PC. Free fatty acids also activated the membrane-bound H+-ATPase. This activation was also dependent on chain length and to the degree of unsaturation, with linolenic and arachidonic acid as the most efficient fatty acids. Exogenously added PC was hydrolyzed to lyso-PC and free fatty acids by an enzyme in the plasma membrane preparation, presumably of the phospholipase A type. Both lyso-PC and free fatty acids are products of phospholipase A2 (EC 3.1.1.4) action, and addition of phospholipase A2 from animal sources increased the H+-ATPase activity within seconds. Interaction with lipids and fatty acids could thus be part of the regulatory system for H+-ATPase activity in vivo, and the endogenous phospholipase may be involved in the regulation of the H+-ATPase activity in the plasma membranne.  相似文献   

11.
12.
Plasma membrane vesicles with H+-ATPase activity were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots using an aqueous polymer two-phase system. Of several detergents tested, only lysophosphatidylcholine solubilized the H+-ATPase in an active form. Solubilization of the H+-ATPase with lysophosphatidylcholine was possible in the absence of glycerol, but the ATPase activity decreased about 4–5 times as rapidly in the absence as in the presence of 30% (w/v) glycerol. The solubilized enzyme was further stabilized by ATP and protons. Addition of 1 m M ATP to the plasma membranes halted inactivation of the H+-ATPase. Even in the absence of polyol compounds and ATP, the enzyme was stable for hours at relatively low pH with an optimum around pH 6.7 at room temperature. The curve for the stability of soluble H+-ATPase as a function of pH closely resembles the pH curve for the activity of the H+-ATPase. This suggests that binding of protons to transport sites may stabilize the soluble H+-ATPase in an enzymatically active form.  相似文献   

13.
Lactobacillus helveticus ATCC 15009 and CRL 581, and Lact. casei LC3 were grown in a complex medium with and without 15 mmol 1-1 of neutralized propionic acid and assayed for proton-translocating ATPase activity. The enzyme activity was higher when the medium contained fatty acid than in its absence for all strains studied. Characteristics of this increased ATPase were identical to those of the enzyme located on the membrane of normal cells. The substrate consumption rate of resting cells was increased by propionate. This effect was reverted by the specific H+-ATPase inhibitor N,N '-dicyclohexylcarbodiimide indicating that the increment of fermentative activity was related to the H+-ATPase activity. These results suggest that the amplification of H+-ATPase activity could be involved in the inhibition of lactobacilli growth in cultures where propionic acid is unavoidably present, such as some mixed cultures with propionibacteria.  相似文献   

14.
Syringostatin is a newly discovered phytotoxin produced by a phytopathogenic bacterium Pseudomonas syringae pv. syringae lilac isolate. The effects of syringostatin and the similar phytotoxins, syringomycin and syringotoxin, on H-ATPase activity were investigated using cultured mung bean ( Vigna radiata L. cv. Ryokuto) cells or plasma membrane vesicles isolated from mung bean hypocotyls. 31P-NMR analysis of cultured cells treated with syringostatin revealed that the cytoplasmic pH was decreased. When plasma membrane was prepared by a two-step method (Dextran gradient followed by a sucrose gradient). syringostatin, syringomycin and syringotoxin inhibited the H+-ATPase activity in a dose-dependent manner. In contrast, these toxins stimulated H+-ATPase activity when plasma membrane was prepared by a one-step method (sucrose gradient). While these toxins inhibited the H+-ATPase activity of inside-out plasma membrane vesicles, the H+-ATPase activity of right-side-out vesicles was stimulated. The detergent. Triton X-100, abolished this stimulatory effect of the toxins on the H+-ATPase of right-side-out vesicles and of one-step purified plasma membrane. The toxins also inhibited the activity of the plasma membrane H+-ATPase solubilized with deoxycholate and Zwittergent 3–14. Taken together, these results indicate that these toxins exert their effects partly by a detergent-like action on the plasma membrane and partly by inhibition of the enzyme.  相似文献   

15.
As water and nutrient uptake should be related in the response of plants to salinity, the aim of this paper is to establish whether or not aquaporin functionality is related to H+-ATPase activity in root cells of pepper ( Capsicum annuum L.) plants. Thus, H+-ATPase activity was measured in plasma membrane vesicles isolated from roots and aquaporin functionality was measured using a cell pressure probe in intact roots. Salinity was applied as 60 m M NaCl or 60 m M KCl, to determine which ion (Na+, K+ or Cl) is producing the effects. We also investigated whether the effects of both salts were ameliorated by Ca2+. Similar results were obtained for cell hydraulic conductivity, Lpc, and H+-ATPase activity, large reductions in the presence at NaCl or KCl and an ameliorative effect of Ca2+. However, fusicoccin (an activator of H+-ATPase) did not alter osmotic water permeability of protoplasts isolated from roots. Addition of Hg2+ inhibited both ATPase and aquaporins, but ATPase also contains Hg-binding sites. Therefore, the results indicate that H+-ATPase and aquaporin activities may not be related in pepper plants.  相似文献   

16.
The plasma membrane H+-ATPase (EC 3.6.1.35) was purified by washing red beet ( Beta vulgaris L.) plasma membranes with sodium deoxycholate and separating the ATPase, solubilized with lysophosphatidylcholine, by centrifugation in a glycerol gradient. The purified H+-ATPase had a sedimentation coefficient of about 8S. In the absence of exogenous protein substrates, the purified ATPase preparation did not present protein kinase activity. Compared with the H+-ATPase in the plasma membrane, the purified ATPase presented a higher affinity for adenosine 5'-triphosphate (ATP) and a lower sensitivity to the inhibitors vanadate and inorganic phosphate. These changes in the kinetics of the ATPase could also be observed by treating the membranes with lysophosphatidylcholine, without purifying the enzyme. These results can be explained assuming that lysophosphatidylcholine interacts with the ATPase altering its kinetics probably by stimulating the transformation from the inhibitor-binding conformation E2 into the ATP-binding conformation E1.  相似文献   

17.
The preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption. However, the adaptation of rice root to low pH has not been fully elucidated. This study investigated the acclimation of plasma membrane H+-ATPase of rice root to low pH. Rice seedlings were grown either with NH4+ or NO3-. For both nitrogen forms, the pH value of nutrient solutions was gradually adjusted to pH 6.5 or 3.0. After 4 d cultivation, hydrolytic H+-ATPase activity, V max, K m, H+-pumping activity, H+ permeability and pH gradient across the plasma membrane were significantly higher in rice roots grown at pH 3.0 than at 6.5, irrespective of the nitrogen forms supplied. The higher activity of plasma membrane H+-ATPase of adapted rice roots was attributed to the increase in expression of OSA1, OSA3, OSA7, OSA8 and OSA9 genes, which resulted in an increase of H+-ATPase protein concentration. In conclusion, a high regulation of various plasma membrane H+-ATPase genes is responsible for the adaptation of rice roots to low pH. This mechanism may be partly responsible for the preference of rice plants to NH4+ nutrition.  相似文献   

18.
The control of ion concentration in the cytosol and the accumulation of ions in vacuoles are thought to be key factors in salt tolerance. These processes depend on the establishment in vacuolar membranes of an electrochemical H+ gradient generated by two distinct H+-translocating enzymes: a H+-PPase and a H+-ATPase. H+-lrans locating activities were characterized in tonoplast-enriched membrane fractions isolated by sucrose gradient centrifugation from sunflower ( Helianthus annuus L.) roots exposed for 3 days to different NaCl regimes. The 15/32% sucrose interface was enriched in membrane vesicles possessing a vacuolar-type H+-ATPase and a H+-PPase, as indicated by inhibitor sensitivity, pH optimum, substrate specificity, ion effects kinetic data and immunolabelling with specific antibodies. Mild and severe stress did not alter the pH profile, ion dependence, apparent Km nor the amount of antigenic protein of either enzyme. Saline treatments slightly increased K+-stimulaied PPase activity with no change in ATPase activity, while both PPi-dependent and NO3-sensitive ATP-dependent H+ transport activities were strongly stimulated. These results are discussed in terms of an adaptative mechanism of the moderately tolerant sunflower plants to salt stress.  相似文献   

19.
NaCl-induced changes in the accumulation of message for the 70 kDa subunit of the tonoplast H+-ATPase and plasma membrane H+-ATPase were studied in hydroponically grown plants of Lycopersicon esculentum Mill. cv. Large Cherry Red. There was increased accumulation of message for the 70 kDa (catalytic) subunit of the tonoplast H+-ATPase in expanded leaves of tomato plants 24 h after final NaCl concentrations were attained. This was a tissue-specific response; levels of this message were not elevated in roots or in young, unexpanded leaves. The NaCl-induced accumulation of this message was transient in the expanded leaves and returned to control levels within 7 days. The temporal and spatial patterns of NaCl-induced accumulation of message for the plasma membrane H+-ATPase differed from the patterns associated with the 70 kDa subunit of the tonoplast H+-ATPase. NaCl-induced accumulation of the plasma membrane H+-ATPase message occurred in both roots and expanded leaves. Initially accumulation of the plasma membrane H+-ATPase message was greater in root tissue than in expanded leaves, but increased to higher levels in expanded leaves after 7 days. These results suggest that increased expression of the tonoplast H+-ATPase is an early response to salinity stress and may be associated with survival mechanisms, rather than with long-term adaptive processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号