首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黑线仓鼠繁殖输出与基础代谢率的关系   总被引:2,自引:1,他引:2  
赵志军 《兽类学报》2011,31(1):69-78
为了解黑线仓鼠繁殖输出与基础代谢率(BMR)的关系,阐明最大持续能量收支(SusMR)的限制水平, 揭示哺乳期能量收支对策,本文测定了哺乳期黑线仓鼠的体重、摄食量、BMR 和身体组成,以及哺乳期的胎仔数、胎仔重和泌乳能量支出(MEO)。结果显示,黑线仓鼠哺乳期体重降低了15.0 ± 0.8% , 摄食量显著增加, 哺乳高峰期平均摄食量为13.9 ± 0.3 g /d, 摄入能为222.1 ± 5.3 kJ/ d, 比哺乳初期增加121% , 比对照组高288% ;哺乳高峰期MEO 为62.4 ± 2.3 kJ/ d, 哺乳末期BMR 为49.7 ± 1.1 kJ/ d; 断乳时平均胎仔数4.7 ± 0.2、窝胎仔重50.5 ±1.6 g; 哺乳末期BMR 比对照组增加48% ,BMR 与消化系统各器官的相关性高于对照组; BMR 与胎仔数、胎仔重、乳腺重量和MEO 显著正相关。结果表明:初次繁殖的黑线仓鼠哺乳期SusMR 限制为4.47 ×BMR, 在自身维持和繁殖输出之间采取了“权衡分配”的原则,通过体重降低以减少BMR 的增加幅度, 从而有利于繁殖输出。  相似文献   

2.
The purpose of this study was to determine whether there are differences in energy intake or energy expenditure that distinguish overweight/obese women with and without binge eating disorder (BED). Seventeen overweight/obese women with BED and 17 overweight/obese controls completed random 24-h dietary recall interviews, and had total daily energy expenditure (TDEE) assessed by the doubly labeled water (DLW) technique with concurrent food log data collection. Participants received two baseline dual-energy X-ray absorptiometry (DXA) scans and had basal metabolic rate (BMR) and thermic effect of food (TEF) measured using indirect calorimetry. Results indicated no between group differences in TDEE, BMR, and TEF. As in our previous work, according to dietary recall data, the BED group had significantly higher caloric intake on days when they had binge eating episodes than on days when they did not (3,255 vs. 2,343 kcal). There was no difference between BED nonbinge day intake and control group intake (2,233 vs. 2,140 kcal). Similar results were found for food log data. Dietary recall data indicated a trend toward higher average daily intake in the BED group (2,587 vs. 2,140 kcal). Furthermore, when comparing TDEE to dietary recall and food log data, both groups displayed significant under-reporting of caloric intake of similar magnitudes ranging from 20 to 33%. Predicted energy requirements estimated via the Harris-Benedict equation (HBE) underestimated measured TDEE by 23-24%. Our data suggest that increased energy intake reported by BED individuals is due to increased food consumption and not metabolic or under-reporting differences.  相似文献   

3.
Food restriction (FR) is hypothesized to decrease body fat content of an animal and thus prevent obesity. However, the response of energy budget to a continuous (CFR) or discontinuous FR (DFR) remains inconsistent. In the present study, effects of CFR or DFR and refeeding on energy budget and behavior were examined in male Swiss mice. CFR significantly decreased the energy expenditure associated with basal metabolic rate (BMR) and activity behavior, but not sufficiently to compensate for energy deficit and thus resulted in lower body mass and fat content. DFR mice had a significantly higher food intake on ad libitum days and showed increases in BMR and activity after 4 weeks’ DFR, which might resulted in lower body mass and less body fat than controls. After being refed ad libitum, both CFR and DFR mice had similar body mass, BMR, and behavioral patterns to controls but had 95% and 75% higher fat content. This suggested that not only CFR but also DFR would be a significant factor in the process of obesity for animals that were refed ad libitum. It also indicated that food restriction interrupted many times by periods of ad libitum feeding had the same long-term effects like continuous underfeeding.  相似文献   

4.
PAPAMANDJARIS, ANDREA A., MATTHEW D. WHITE, AND PETER J. H. JONES. Components of total energy expenditure in healthy young women are not affected after 14 days of feeding with medium-versus long-chain triglycerides. Obes Res. Objective: To examine the effect of consumption of medium-chain triglycerides (MCT) vs. long-chain triglycerides (LCT) on total energy expenditure (TEE) and its components in young women during the second week of a 2-week feeding period. Research Methods and Procedures: Twelve healthy lean women (age: 22. 7±0. 7 years, body mass index [BMI]: 21. 5±0. 8 kg/m2) were fed weight maintenance diets containing 15% of energy as protein, 45% as carbohydrate, and 40% as fat, 80% of which was treatment fat, for 2 weeks in a randomized cross-over design separated by a 2-week washout period. Dietary fat was composed of triglycerides containing either 26% medium-chain fatty acids (MCFA) and 74% long-chain fatty acids (LCFA), or 2% MCFA and 98% LCFA. Free-living TEE was measured from day 7 to 14 on each dietary treatment using doubly labeled water (DLW). Basal metabolic rate (BMR) and thermic effect of food (TEF) were measured on days 7 and 14 using respiratory gas exchange analysis (RGE) for 30 minutes and 330 minutes, respectively. Activity-induced energy expenditure (AIEE) was derived as the difference between TEE and the sum of BMR and TEF. Results: The average TEE while consuming the MCT diet (2246±98 kcal/day) did not differ from that of the LCT diet (2186±138 kcal/day. BMR was significantly higher on the MCT diet on day 7 (1219±38 kcal/day vs. 1179±42 kcall day), but not on day 14; there was no effect of diet on TEF. There were no differences in BMR, TEF, or AIEE between diets when expressed as percentages of TEE. On average, BMR, TEF, and AIEE represented 54. 6%, 8. 2%, and 37. 2%, respectively, of TEE. Discussion: Results suggest that between day 7 and day 14 feeding of MCT vs. LCT at these levels, TEE is not affected and that increases seen in energy expenditure following MCT feeding may be of short duration. Thus, compensatory mechanisms may exist which blunt the effect of MCT on energy components over the longer term.  相似文献   

5.
Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.  相似文献   

6.
Basal metabolic rate (BMR) represents the minimum maintenance energy requirement of an endotherm and has far-reaching consequences for interactions between animals and their environments. Avian BMR exhibits considerable variation that is independent of body mass. Some long-distance migrants have been found to exhibit particularly high BMR, traditionally interpreted as being related to the energetic demands of long-distance migration. Here we use a global dataset to evaluate differences in BMR between migrants and non-migrants, and to examine the effects of environmental variables. The BMR of migrant species is significantly higher than that of non-migrants. Intriguingly, while the elevated BMR of migrants on their breeding grounds may reflect the metabolic machinery required for long-distance movements, an alternative (and statistically stronger) explanation is their occupation of predominantly cold high-latitude breeding areas. Among several environmental predictors, average annual temperature has the strongest effect on BMR, with a 50% reduction associated with a 20 degrees C gradient. The negative effects of temperature variables on BMR hold separately for migrants and non-migrants and are not due their different climatic associations. BMR in migrants shows a much lower degree of phylogenetic inertia. Our findings indicate that migratory tendency need not necessarily be invoked to explain the higher BMR of migrants. A weaker phylogenetic signal observed in migrants supports the notion of strong phenotypic flexibility in this group which facilitates migration-related BMR adjustments that occur above and beyond environmental conditions. In contrast to the findings of previous analyses of mammalian BMR, primary productivity, aridity or precipitation variability do not appear to be important environmental correlates of avian BMR. The strong effects of temperature-related variables and varying phylogenetic effects reiterate the importance of addressing both broad-scale and individual-scale variation for understanding the determinants of BMR.  相似文献   

7.
Basal rate of metabolism (BMR) and resting maternal rate of metabolism around peak lactation (RMR(L)) were measured in Crocidura russula, Mus domesticus and Microtus arvalis. These species have a moderate or high BMR relative to the scaling relationship of Kleiber. One goal of the study was to check whether females of these species show elevated rates of metabolism during lactation. A second goal was to test for a possible intraspecific correlation between the level of BMR and the change in rate of metabolism associated with lactation. RMR(L) was significantly higher than BMR in all species when changes in body mass between the two states were taken into account. Data available on other small mammals are in accordance with this finding, which does not support the hypothesis that low-BMR mammal species increase their rate of metabolism during reproduction because Kleiber's relationship represents an optimal level for therian reproduction. Within C. russula and M. domesticus, a significant and negative correlation was found between the level of BMR and the change in rate of metabolism associated with lactation. This pattern is presumably due to the fact that low-BMR females undergo more extensive physiological and anatomical changes during lactation than high-BMR females.  相似文献   

8.
攻击行为是增强个体生存能力和提高繁殖成功机会的最有效竞争方式之一。为理解攻击行为对小型哺乳动物能量学收支策略的影响,以具有独居且好斗习性的黑线仓鼠为研究对象,基于居留者-入侵者(resident-intruder)争斗方式将入侵鼠放入居留鼠笼中(10min / d),21d后测定能量摄入、基础代谢率(BMR),分析BMR和内脏器官重量的相关性。结果显示,攻击行为使居留组BMR增加了26.2%,使摄入能和消化能显著增加。居留组体重、胴体重,以及某些代谢活性器官(肝脏、肺脏、肾脏、胃、小肠和盲肠)重量显著增加,且这些器官重量与BMR显著正相关。结果表明,增加能量摄入和BMR是黑线仓鼠应对攻击行为的主要能量学收支策略;在种内个体之间强烈的攻击行为可能是该鼠维持较高水平BMR的原因之一。  相似文献   

9.
The physiological requirements of reproduction are predicted to generate a link between energy, physiology and life history traits. Simultaneously, low maintenance costs, measured by energy consumption, are expected to be advantageous. Here we investigated fitness relatedness of traits by estimating genetic correlations between, and inbreeding depression for, body mass, basal metabolic rate (BMR) and other life history characters in a wild rodent, Myodes glareolus. The narrow-sense heritability of absolute and mass corrected BMRs were high for females (h2 = 0.48 and 0.42) but low and non-significant for males (0.32 and 0.09). A significant positive genetic correlation between BMR and litter size suggests that traits connected to female fecundity might favour higher metabolism (i.e. support increased intake hypothesis). However, the estimates of inbreeding depression indicate that, while higher values of body mass and female litter size could be positively associated with overall fitness, the association between BMR and overall fitness in bank voles would be negative (i.e. support compensation hypothesis). This result suggests that the advantages of larger litters and larger body mass might be evolutionary constrained by high costs of maintenance of those traits, as reflected by the level of basal metabolism.  相似文献   

10.
Hypertension is an important global health issue and is currently increasing at a rapid pace in most industrializing nations. Although a number of risk factors have been linked with the development of hypertension, including obesity, high dietary sodium, and chronic psychosocial stress, these factors cannot fully explain the variation in blood pressure and hypertension rates that occurs within and between populations. The present study uses data collected on adults from three indigenous Siberian populations (Evenki, Buryat, and Yakut [Sakha]) to test the hypothesis of Luke et al. (Hypertension 43 (2004) 555-560) that basal metabolic rate (BMR) and blood pressure are positively associated independent of body size. When adjusted for body size and composition, as well as potentially confounding variables such as age, smoking status, ethnicity, and degree of urbanization, BMR was positively correlated with systolic blood pressure (SBP; P < 0.01) and pulse pressure (PP; P < 0.01); BMR showed a trend with diastolic blood pressure (DBP; P = 0.08). Thus, higher BMR is associated with higher SBP and PP; this is opposite the well-documented inverse relationship between physical activity and blood pressure. If the influence of BMR on blood pressure is confirmed, the systematically elevated BMRs of indigenous Siberians may help explain the relatively high blood pressures and hypertension rates documented among native Siberians in the post-Soviet period. These findings underscore the importance of considering the influence of biological adaptation to regional environmental conditions in structuring health changes associated with economic development and lifestyle change.  相似文献   

11.
Objectives: The purpose of this study was to determine the relationship between autonomic nervous system dysfunction and basal metabolic rate (BMR), and the effect of spasticity on basal metabolic rate. Research Method and Procedures: Twenty men (11 paraplegic and 9 tetraplegic) with American Spinal Injury Association (ASIA)‐A and ‐B grade chronic spinal cord injury (SCI) participated in this study. Total body fat mass and lean tissue mass were measured in all participants using DXA by standard methods. Patients were allocated into 2 groups to determine the effect of autonomic nervous system dysfunction on BMR: Group I (T6 and upper‐level injuries with history of autonomic dysreflexia) and Group II (T7 and lower‐level injuries without history of autonomic dysreflexia). Measurements of BMR were determined by indirect calorimetry under standardized conditions. Results: There were 13 patients in Group I and 7 patients in Group II and the difference between these two in terms of time since injury, BMI, age, weight, lean tissue mass, BMR, and BMR/kg were not significant. Conclusion: We concluded that autonomic nervous system dysfunction does not affect BMR, and it might be ignored in considering energy needs in spinal cord injury.  相似文献   

12.
以封闭式流体压力呼吸计测定KM小鼠(Mus musculus)的基础代谢率(BMR);采用残差分析和Pearson相关分析检验BMR与繁殖输出、内脏器官的相关性。哺乳末期BMR显著高于繁殖前,繁殖前BMR与繁殖输出不相关,但哺乳末期BMR与体重、摄食量、胎仔数和胎仔重、内脏器官和消化道显著正相关;与消化道器官的相关性高于其他内脏器官。研究结果支持"哺乳期较高的BMR有利于消化系统增强消化和吸收能力,以增加能量摄入用于繁殖输出"的假设。  相似文献   

13.
To characterize further the impact of exercise before a meal on thermogenesis, the effects of exercise intensity and mode and the duration of the effect of exercise on the thermic effect (TEF) of a 720-kcal mixed meal were compared in 10 lean and 10 obese men (16 +/- 1 vs. 34 +/- 2% fat). In study A, TEF (kcal/3 h) was significantly greater for the lean than the obese men during rest and immediately after 1 h of cycling at 50 and 100 W. TEF was significantly greater after both exercise intensities than during rest for the obese men, but exercise had no effect on TEF in the lean men. In study B, TEF was significantly greater for the lean than the obese men during rest and immediately after 1 h of leg cycling at an O2 consumption of 1.09 l/min but only marginally different after 1 h of arm exercise at the same O2 consumption (P = 0.15). For the obese men, TEF was greater after arm than leg cycling and greater after leg cycling than at rest (P less than 0.01), but TEF was not different among the three conditions for the lean men. In study C, TEF was compared at rest and immediately and 24 h after 1 h of cycling at 100 W. TEF was greater for the lean than the obese men under all conditions (P less than 0.05). For the obese but not the lean men, TEF was greater both immediately after and on the day after exercise than at rest (P less than 0.01). Thus, acute exercise improves but does not normalize the blunted TEF in obesity; a minimally intense bout of exercise is needed to improve TEF; exercise mode alters thermogenesis in the obese men, even at a fixed intensity; and TEF in the obese men is enhanced for as long as 24 h after exercise.  相似文献   

14.
Basal metabolic rate (BMR) constitutes the minimal metabolic rate in the zone of thermo‐neutrality, where heat production is not elevated for temperature regulation. BMR thus constitutes the minimum metabolic rate that is required for maintenance. Interspecific variation in BMR in birds is correlated with food habits, climate, habitat, flight activity, torpor, altitude, and migration, although the selective forces involved in the evolution of these presumed adaptations are not always obvious. I suggest that BMR constitutes the minimum level required for maintenance, and that variation in this minimum level reflects the fitness costs and benefits in terms of ability to respond to selective agents like predators, implying that an elevated level of BMR is a cost of wariness towards predators. This hypothesis predicts a positive relationship between BMR and measures of risk taking such as flight initiation distance (FID) of individuals approached by a potential predator. Consistent with this suggestion, I show in a comparative analysis of 76 bird species that species with higher BMR for their body mass have longer FID when approached by a potential predator. This effect was independent of potentially confounding variables and similarity among species due to common phylogenetic descent. These results imply that BMR is positively related to risk‐taking behaviour, and that predation constitutes a neglected factor in the evolution of BMR.  相似文献   

15.
Data on energetic profile of many species Passeriformes and Non-Passeriformes show that the basal metabolic rate (BMR) is strongly correlated with potential energy (MPE) and potential productive energy (PPE) (MPE is about 4BMR in all homeothermic animals). BMR is the minimal power of animal and strongly correlated with the daily work output, which may be determined by measuring total animal activity. Hence, BMR is the fundamental scale of power which determines the intensity of the actual interaction of an individual with the environment. The increase in BMR of a particular animal should rise the potential energy (MPE), potential productive energy (PPE), and the level of daily work output. BMR in Passerines birds is 1.3-1.5 fold higher than that in Non-Passerines and Mammals. Origin ofendothermy in the course of evolution should be associated with needs of general activity rather than with the requirements of thermoregulation.  相似文献   

16.
Basal metabolic rate (BMR) is closely linked to different habitats and way of life. In birds, some studies have noted that BMR is higher in marine species compared to those inhabiting terrestrial habitats. However, the extent of such metabolic dichotomy and its underlying mechanisms are largely unknown. Migratory shorebirds (Charadriiformes) offer a particularly interesting opportunity for testing this marine-non-marine difference as they are typically divided into two broad categories in terms of their habitat occupancy outside the breeding season: 'coastal' and 'inland' shorebirds. Here, we measured BMR for 12 species of migratory shorebirds wintering in temperate inland habitats and collected additional BMR values from the literature for coastal and inland shorebirds along their migratory route to make inter- and intraspecific comparisons. We also measured the BMR of inland and coastal dunlins Calidris alpina wintering at a similar latitude to facilitate a more direct intraspecific comparison. Our interspecific analyses showed that BMR was significantly lower in inland shorebirds than in coastal shorebirds after the effects of potentially confounding climatic (latitude, temperature, solar radiation, wind conditions) and organismal (body mass, migratory status, phylogeny) factors were accounted for. This indicates that part of the variation in basal metabolism might be attributed to genotypic divergence. Intraspecific comparisons showed that the mass-specific BMR of dunlins wintering in inland freshwater habitats was 15% lower than in coastal saline habitats, suggesting that phenotypic plasticity also plays an important role in generating these metabolic differences. We propose that the absence of tidally-induced food restrictions, low salinity, and less windy microclimates associated with inland freshwater habitats may reduce the levels of energy expenditure, and hence BMR. Further research including common-garden experiments that eliminate phenotypic plasticity as a source of phenotypic variation is needed to determine to what extent these general patterns are attributable to genotypic adaptation.  相似文献   

17.
We tested the hypothesis that hormone replacement therapy (HRT)-related increases in C-reactive protein (CRP) would either be blunted or absent in postmenopausal women who regularly perform endurance exercise. Plasma CRP is an independent predictor of future cardiovascular events in healthy men and women. Oral HRT increases plasma CRP concentrations in postmenopausal women. Regular aerobic exercise reduces the risk of cardiovascular events and is associated with lower CRP concentrations in adults. To date, no study has evaluated the influence of habitual physical activity on the elevation of CRP associated with HRT. Plasma CRP concentrations were measured in 114 postmenopausal women: 39 physically active (endurance trained) and 75 sedentary postmenopausal subjects. Sixty-five women were users of HRT (22 physically active and 43 sedentary), and 49 were nonusers (17 physically active and 32 sedentary). CRP levels were approximately 75% higher (P < 0.01) in the sedentary users vs. nonusers of HRT (1.9 +/- 1.8 vs. 1.1 +/- 1.0 mg/l). In contrast, there was no difference in CRP levels between the physically active users and nonusers of HRT (0.6 +/- 0.4 vs. 0.4 +/- 0.2 mg/l; P = 0.61). Regardless of HRT status, CRP concentrations were approximately 65% lower in the physically active compared with sedentary women. In conclusion, physically active postmenopausal women exhibit lower plasma CRP concentrations compared with sedentary controls. Importantly, the HRT-related elevation in plasma CRP levels observed in sedentary women is absent in women who engage in regular endurance exercise. These data suggest that habitual physical activity may prevent the elevation in CRP concentrations due to HRT.  相似文献   

18.
Comparative analyses of avian energetics often involve the implicit assumption that basal metabolic rate (BMR) is a fixed, taxon-specific trait. However, in most species that have been investigated, BMR exhibits phenotypic flexibility and can be reversibly adjusted over short time scales. Many non-migrants adjust BMR seasonally, with the winter BMR usually higher than the summer BMR. The data that are currently available do not, however, support the idea that the magnitude and direction of these adjustments varies consistently with body mass. Long-distance migrants often exhibit large intra-annual changes in BMR, reflecting the physiological adjustments associated with different stages of their migratory cycles. Phenotypic flexibility in BMR also represents an important component of short-term thermal acclimation under laboratory conditions, with captive birds increasing BMR when acclimated to low air temperatures and vice versa. The emerging view of avian BMR is of a highly flexible physiological trait that is continually adjusted in response to environmental factors such as temperature. The within-individual variation observed in avian BMR demands a critical re-examination of approaches used for comparisons across taxa. Several key questions concerning the shapes and other properties of avian BMR reaction norms urgently need to be addressed, and hypotheses concerning metabolic adaptation should explicitly account for phenotypic flexibility.  相似文献   

19.
Shorebirds have high resting and field metabolic rates relative to many other bird groups, and this is posited to be related to their high‐energy lifestyle. Maximum metabolic outputs for cold or exercise are also often high for bird groups with energetically demanding lifestyles. Moreover, shorebirds demonstrate flexible basal and maximal metabolic rates, which vary with changing energy demands throughout the annual cycle. Consequently, shorebirds might be expected to have high maximum metabolic rates, especially during migration periods. We captured least Calidris minutilla and pectoral C. melanotos sandpipers during spring and fall migration in southeastern South Dakota and measured maximal exercise metabolic rate (MMR; least sandpipers only), summit metabolic rate (Msum, maximal cold‐induced metabolic rate) and basal metabolic rate (BMR, minimum maintenance metabolic rate) with open‐circuit respirometry. BMR for both least and pectoral sandpipers exceeded allometric predictions by 3–14%, similar to other shorebirds, but Msum and MMR for both species were either similar to or lower than allometric predictions, suggesting that the elevated BMR in shorebirds does not extend to maximal metabolic capacities. Old World shorebirds show the highest BMR during the annual cycle on the Arctic breeding grounds. Similarly, least sandpiper BMR during migration was lower than on the Arctic breeding grounds, but this was not the case for pectoral sandpipers, so our data only partially support the idea of similar seasonal patterns of BMR variation in New World and Old World shorebirds. We found no correlations of BMR with either Msum or MMR for either raw or mass‐independent data, suggesting that basal and maximum aerobic metabolic rates are modulated independently in these species.  相似文献   

20.
Objective: To compare the thermic response to a meal between men and women of varied body composition and to determine whether adrenergic amines extracted from citrus aurantium (CA) induce an increase in metabolic rate and enhance the thermic response to the meal. Research Methods and Procedures: In 30 healthy weight‐stable subjects (17 women, 13 men; BMI: 20 to 42 kg/m2), body composition was determined by bioimpedance analysis followed by resting energy expenditure for 20 minutes, and the thermic effect of food (TEF) of a 1.7‐MJ, 30‐gram protein meal was determined intermittently for 300 minutes by indirect calorimetry. In a subset of 22 subjects, the TEFs of CA alone and when added to the same 1.7‐MJ meal were determined. Blood pressure and pulse before and throughout the studies and catecholamine excretion were determined. Results: TEF was significantly lower in women than men (152 ± 7 vs. 190 ± 12 kJ and 8.8 ± 0.4% vs. 11.0 ± 0.7% of meal), independently of age and magnitude of adiposity. The thermic response to CA alone was higher in men, but, when added to the meal, CA increased TEF only in women and to values no longer different from men. CA had no effect on blood pressure and pulse rate but increased epinephrine excretion by 2.4‐fold. Discussion: A 20% lower TEF in women suggests a diminished sympathetic nervous system response to meals, because with CA, TEF increased by 29% only in women. However, this acute response may not translate into a chronic effect or a clinically significant weight loss over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号