首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen fixation associated with non-legumes in agriculture   总被引:1,自引:0,他引:1  
P. J. Dart 《Plant and Soil》1986,90(1-3):303-334
Summary This review examines the nitrogen cycle in upland agricultural situations where nonlegume N2-fixation is likely to be important for crop growth. Evidence for associative fixation is adduced from accumulation of N in the top 15 cm soil under grasses, from N balances for crop production obtained from both pot and field experiments, in tropical and temperate environments, measurements of nitrogen (C2H2 reduction) activity, uptake of15N2 by plants and15N isotope dilution. Factors influencing the activity such as the provision of carbon substrate by the plant and the efficiency of its utilisation by the bacteria, plant cultivar, soil moisture and N levels, and inoculation with N2-fixing bacteria are discussed. Crop responses to inoculation withAzospirillum are detailed. The breakdown of crop residues, particularly straw, can support large levels of N2-fixation. Cyanobacteria as crusts on the soil surface also fix nitrogen actively in many environments. Fixation by the nodulated, non-legume treesCasuarina andParasponia has beneficial effects in some cropping systems in Asia. I conclude that nonlegume N2-fixation makes a significant contribution to the production of some major cereal crops in both temperate and tropical environments.  相似文献   

2.
Grain legumes such as field pea are known to have high variability of yield and dinitrogen (N2) fixation between seasons, but less is known about the yearly spatial variability within a field. The objective of this study was to improve the understanding of spatial field scale variability of field pea dry matter (DM) yield and nitrogen (N) acquisition from fixation and soil within a 10 ha farmer’s field. A 42 m systematic random grid providing 56 plant sampling locations across 10 ha supplemented by soil data provided from an existing database were used to determine whether the observed spatial variability could be explained by the variability in selected abiotic soil properties. All measured soil variables showed substantial variability across the field and the pea dry matter production ranged between 4.9 and 13.8 Mg ha?1 at maturity. The percent of total N derived from the atmosphere (%Ndfa) at flowering, estimated using the 15N natural abundance method, ranged from 65% to 92% with quantitative N2-fixation estimates from 93 kg to 202 kg N ha?1. At maturity %Ndfa ranged from 26% to 81% with quantitative N2-fixation estimates from 48 kg to 167 kg N ha?1. Significant correlations were found between pea dry matter production and humus content, potassium content (collinear with humus) and total N in the 0–25 cm topsoil. No correlation was found between any individual soil property and %Ndfa or kg N fixed ha?1. It was not possible to create a satisfactory global multi-regression model for the field dry matter production and N2-fixation. A number of other models were tested, but the best was only able to explain less than 40% of the variance in %Ndfa using seven soil properties. Together with the use of interpolated soil data, high spatial variation of soil 15N natural abundance, a mean increase in pea 15N natural abundance of 1 δ unit between flowering and maturity and a reference crop decline of 1.3 δ15N unit over the same period increased noise of derived variables, making modeling of N2-fixation difficult. Furthermore, complex interactions with other soil variables and biotic stresses not measured in this study may have contributed significantly to the variability of fixation and yield of pea within the field. Pea N2-fixation obtained from two additional 10 ha farmer fields was in agreement with the other findings highlighting that N2-fixation takes place under a range of physical and chemical soil properties and is controlled by local site specific conditions. In future studies addressing field scale variability we recommend that soil variables wherever possible should be measured in the same plots as the sampled crop. Sampling designs that optimize the use of a priori information about the field soil and landscape properties for positioning plots and that facilitate estimates of local variances should be considered.  相似文献   

3.
The δ15N natural abundance (‰) of the total soil N pool varies at the landscape level, but knowledge on short-range variability and consequences for the reliability of isotopic methods are poorly understood. The short-range spatial variability of soil δ15N natural abundance as revealed by the 15N abundance in spring barley and N2-fixing pea was measured within the 0.15–4 m scale at flowering and at maturity. The short-range spatial variability of soil δ15N natural abundance and symbiotic nitrogen fixation were high at both growth stages. Along a 4-m row, the δ15N natural abundance in barley reference plants varied up to 3.9‰, and sometimes this variability was observed even between plants grown only 30 cm apart. The δ15N natural abundance in pea varied up to 1.4‰ within the 4-m row. The estimated percentage of nitrogen derived from the atmosphere (%Ndfa) varied from 73–89% at flowering and from 57–95% at maturity. When increasing the sampling area from 0.01 m2 (single plants) and up to 0.6 m2 (14 plants) the %Ndfa coefficient of variation (CV) declined from 5 to 2% at flowering and from 12 to 2% at maturity. The implications of the short-range variability in δ15N natural-abundance are that estimates of symbiotic N2-fixation can be obtained from the natural abundance method if at least half a square meter of crop and reference plants is sampled for the isotopic analysis. In fields with small amounts of representative reference crops (weeds) it might be necessary to sow in reference crop species to secure satisfying N2-fixation estimates.  相似文献   

4.
Summary Differences in N2-fixation byPhaseolus vulgaris bean cultivars were successfully evaluated in the field using15N isotope dilution technique with a non-fixing test crop of a different species (wheat). The Phaseolus cultivars could have been similarly ranked for N2-fixation capacity from either seed yield or total nitrogen yield, but the isotope method provided a direct measure of N2-fixation and made it possible to estimate the proportion of fixed to total nitrogen in the crop and in plant parts. Amounts of nitrogen fixed varied between 24.59 kg N/ha for the 60-day cultivar Goiano precoce to 64.91 kg N/ha for the 90-day cultivar Carioca. The per cent of plant nitrogen due to fixation was 57–68% for the 90-day cultivars and 37% for Goiano precoce (60-day cultivar). Fertilizer utilization was 17–30% of a 20 kg N/ha fertilizer application. 100 kg N/ha fertilizer application decreased N2-fixation without suppressing it totally. Differences in yield between the highest yielding (Carioca) and the lowest (Moruna) 90-day cultivars were also due apparently to varietal differences in efficiency of conversion of nitrogen to economic matteri.e. seed, as well as to differences in capacity of genotypes for N2-fixation. The work described here was in part supported by IAEA Research Contract No. RC/2084 UNDP/IAEA Project BRA/78/006  相似文献   

5.
Two experiments were carried out from 1981 to 1983 in Vertisol field at ICRISAT Center, Patancheru, India to measure N2-fixation of pigeonpea [Cajanus cajan (L.) Millsp.] using the15N isotope dilution technique. One experiment examined the effect of control of a nodule-eating insect on fixation while another in vestigated the effect of intercroping with cereals on fixation and the residual effect of pigeonpea on a succeeding cereal crop. Although both experiments indicated that at least 88% of the N in pigeonpea was fixed from the atmosphere, one result is considered fortuitous in view of the differential rates of growth of the legume and the control, sorghum [Sorghum bicolor (L.) Moench]. The difference method of calculation in dieated negative fixation and the results emphasized the problem of finding a suitable nonfixing control. In a second experiment, when all plants were confined to a known volume of soil to which15N fertilizer was added in the field, these problems were overcome, and isotope dilution and difference methods gave similar results of N2-fixation of about 90%. In intercropped pigeonpea 96% of the total N was derived from the atmosphere. This estimate might be an artifact. There was no evidence of benefit from N fixed by pigeonpea to intercropped sorghum plants. Plant tissue15N enrichments of cereal crops grown after pigeonpea indicated that the cereal derived some N fixed by the previous pigeonpea. Thus residual benefits to cereals are not only an effect of ‘sparing’ of soil N.  相似文献   

6.
Fires may greatly alter the N budget of a plant community. During fire nitrogen is lost to the atmosphere. Although high light availability after fire promotes N2-fixation, the presumably high soil N availability could limit N2-fixation activity. The latter limitation might be particularly acute in legume seedlings compared with resprouts, which have immediate access to belowground stored carbon. We wished to learn whether early post-fire conditions were conducive to N2-fixation in leguminous seedlings and resprouts in two types of grassland and in a shrubland and whether seedlings and resprouts incurred different amounts of N2-fixation after fire. We set 18 experimental fires in early autumn on 6 plots, subsequently labelling 6 subplots (2 × 2 m2) in each community with 15NH4+-N (99 atom % excess). For 9 post-fire months we measured net N mineralisation in the top 5 cm of soil and we calculated the fraction of legume N derived from the atmosphere (%Ndfa) in seedlings and resprouts. We used two independent estimates of the amounts of N derived from non-atmospheric sources in potentially N2-fixing plants: mean soil pool abundance and the 15N-enrichment of non-legumes. Despite substantial soil net N mineralisation in all burned community types (about 2.6 g Nm−2 during the first nine months after fire), the %Ndfa of various legume species was 52–99%. Legumes from both grasslands showed slightly higher N2-fixation values than shrubland legumes. As grassland legumes grew in more belowground dense communities than shrubland legumes, we suggest that higher competition for soil resources in well established grass-resprouting communities may enhance the rate of N2-fixation after fire. In contrast to our hypothesis, legume seedlings and resprouts from the three plant communities studied, had similar %Ndfa and apparently acquired most of their N from the atmosphere rather than from the soil.  相似文献   

7.
Summary The 15N/14N ratios of plant and soil samples from Northern California ecosystems were determined by mass spectrometry. The 15N abundance of 176 plant foliar samples averaged 0.0008 atom % 15N excess relative to atmospheric N2 and ranged from-0.0028 to 0.0064 atom % 15N excess relative to atmospheric N2. Foliage from reported N2-fixing species had significantly lower mean 15N abundance (relative to atmospheric N2 and total soil N) and significantly higher N concentration (% N dry wt.) than did presumed non-N2-fixing plants growing on the same sites. The mean difference between N2-fixing species and other plants was 0.0007 atom % 15N. N2-fixing species had lower 15N abundance than the other plants on most sites examined despite large differences between sites in vegetation, soil, and climate. The mean 15N abundance of N2-fixing plants varied little between sites and was close to that of atmospheric N2. The 15N abundance of presumed non-N2-fixing species was highest at coastal sites and may reflect an input of marine spray N having relatively high 15N abundance. The 15N abundance of N2-fixing species was not related to growth form but was for other plants. Annual herbaceous plants had highest 15N abundance followed in decreasing order by perennial herbs, shrubs, and trees. Several terrestrial ferns (Pteridaceae) had 15N abundances comparable to N2-fixing legumes suggesting N2-fixation by these ferns. On sites where the 15N abundance of soil N differs from that of the atmosphere, N2-fixing plants can be identified by the natural 15N abundance of their foliage. This approach can be useful in detecting and perhaps measuring N2-fixation on sites where direct recovery of nodules is not possible.  相似文献   

8.
Summary Two experiments were carried out with two nodulating and non-nodulating soybean isolines, with three different levels of N as (15NH4)2SO4 at the equivalent of 0, 25 and 50 kg N/ha. In the first experiment three seeds were sown in each pot and the plants harvested at 35, 55 and 75 days. In the second experiment only one seed was sown per pot and harvested at 75 days.Isotope dilution technique and in certain cases natural isotope variation (15N) was used to determine directly the origin of nitrogen in the plant, whether from soil, fertilizer or biological N2-fixation. The use of nodulating and non-nodulating isolines enabled comparison with the classical method of estimating N2-fixation by difference from total plant N. Results at the 75 day harvest were similar for either method, but at the earlier harvests, particularly at 35 days, the total-N method was inadequate. The isotope method appeared more sensitive while the total-N method suffered from greater variability with correspondingly high standard errors and significant differences.It was found that by the 35 and 55 day harvests hardly any N2-fixation had taken place, plant nitrogen being almost entirely derived from soil or fertilizer N. Plants in competition used up soil fertilizer N more rapidly, thus stimulating symbiotic nitrogen fixation. When only one plant was grown in each pot it had a greater proportion of N derived from soil or fertilizer, and less N derived from fixation. In general the15N data showed that only about 25% of the applied fertilizer N was absorbed by the plant.The nodulating isoline absorbed more N than the non-nodulating plants. This suggests a possible synergistic effect of N2-fixation on N derived from other sources, giving an increase in total-N content of nudulated plants. The N derived from N2-fixation was scarcely detectable in the roots but appeared to be translocated almost entirely to shoots and pods.With 25 kg N/ha the greater proportion of the nitrogen in the pods was derived from N2-fixation. Even with 50 kg N/ha the nitrogen in the pods derived from fixation remained high, that being derived from fertilizer being less than 15%. About 80% of the nitrogen in the nodules was due to fixation.In the present experiment the application of 25 kg N/ha appeared sufficient to give maximum N absorption by both isolines. At this level symbiotic fixation by Rhizobium remained high in nodulating plants, while the proportion of total N due to fixation was reduced with 50 kg N/ha.UNDP/IAEA Project BRA 78/006.  相似文献   

9.
The15N abundance of plants usually closely reflects the15N abundance of their major immediate N source(s); plant-available soil N in the case of non-N2-fixing plants and atmospheric N2 in the case of N2 fixing plants. The15N abundance values of these sources are usually sufficiently different from each other that a significant and systematic difference in the15N abundance between the two kinds of plants can be detected. This difference provides the basis for the natural15N abundance method of estimating the relative contribution of atmospheric N2 to N2-fixing plants growing in natural and agricultural settings. The natural15N abundance method has certain advantages over more conventional methods, particularly in natural ecosystems, since disturbance of the system is not required and the measurements may be made on samples dried in the field. This method has been tested mainly with legumes in agricultural settings. The tests have demonstrated the validity of this method of arriving at semi-quantitative estimates of biological N2-fixation in these settings. More limited tests and applications have been made for legumes in natural ecosystems. An understanding of the limits and utility of this method in these systems is beginning to emerge. Examples of systematic measurements of differences in15N abundance between non-legume N2-fixing systems and neighbouring non-fixing systems are more unusual. In principle, application of the method to estimate N2-fixation by nodulated non-legumes, using the natural15N abundance method, is as feasible as estimating N2-fixation by legumes. Most of the studies involving N2-fixing non-legumes are with this type of system (e.g., Ceanothus, Chamabatia, Eleagnus, Alnus, Myrica, and so forth). Resuls of these studies are described. Applicability for associative N2-fixation is an empirical question, the answer to which probably depends upon the degree to which fixed N goes predominantly to the plant rather than to the soil N pool. The natural15N abundance method is probably not well suited to assessing the contribution of N2-fixation by free-living microorganisms in their natural habitat, particularly soil microorganisms.This work was supported in part by subcontracts under grants from the US National Science Foundation (DEB79-21971 and BSR821618)  相似文献   

10.
Summary

Patterns of foliar δ15 N can suggest testable hypotheses concerning N use among and within plant species. However, both spatial and time-series sampling is required to establish how the patterns vary within and among species. On a seasonal basis, foliar δl5 Nrankings may change among the species compared. When symbiotic N2-fixers are among the plants sampled, N2-fixation may be temporally disjunct from the near-0%c, expected foliar δ15 N, which is usually attributed to N2-fixation, and the fates of previously fixed N may not be apparent from a net foliar δ15 N of either soil or plants.  相似文献   

11.
12.
I. Watanabe 《Plant and Soil》1986,90(1-3):343-357
Summary Of the 143 million hectares of cultivated rice land in the world, 75% are planted to wetland rice. Wet or flooded conditions favour biological nitrogen fixation by providing (1) photic-oxic floodwater and surface soil for phototrophic, free-living or symbiotic blue-green algae (BGA), and (2) aphotic-anoxic soil for anaerobic or microaerobic, heterotrophic bacteria. TheAzolla-Anabaena symbiosis can accumulate as much as 200 kg N ha–1 in biomass. In tropical flooded fields, biomass production from a singleAzolla crop is about 15 t fresh weight ha–1 or 35 kg N ha–1. Low tolerance for high temperature, insect damage, phosphorus requirement, and maintenance of inoculum, limit application in the tropics. Basic work on taxonomy, sporulation, and breeding ofAzolla is needed. Although there are many reports of the positive effect of BGA inoculation on rice yield, the mechanisms of yield increase are not known. Efficient ways to increase N2-fixation by field-grown BGA are not well exploited. Studies on the ecology of floodwater communities are needed to understand the principles of manipulating BGA. Bacteria associated with rice roots and the basal portion of the shoot also fix nitrogen. The system is known as a rhizocoenosis. N2-fixation in rhizocoenosis in wetland rice is lower than that ofAzolla or BGA. Ways of manipulating this process are not known. Screening rice varieties that greatly stimulate N2-fixation may be the most efficient way of manipulating the rhizocoenosis. Stimulation of N2-fixation by bacterial inoculation needs to be quantified.  相似文献   

13.
Nitrogen (N) deficiency is a major constraint to the productivity of the African smallholder farming systems. Grain, green manure and forage legumes have the potential to improve the soil N fertility of smallholder farming systems through biological N2-fixation. The N2-fixation of bean (Phaseolus vulgaris), soyabean (Glycine max), groundnut (Arachis hypogaea), Lima bean (Phaseolus lunatus), lablab (Lablab purpureus), velvet bean (Mucuna pruriens), crotalaria (Crotalaria ochroleuca), jackbean (Canavalia ensiformis), desmodium (Desmodium uncinatum), stylo (Stylosanthes guianensis) and siratro (Macroptilium atropurpureum) was assessed using the 15N natural abundance method. The experiments were conducted at three sites in western Kenya, selected on an agro-ecological zone (AEZ) gradient defined by rainfall. On a relative scale, Museno represents high potential AEZ 1, Majengo medium potential AEZ 2 and Ndori low potential AEZ 3. Rainfall in the year of experimentation was highest in AEZ 2, followed by AEZ 1 and AEZ 3. Experimental fields were classified into high, medium and low fertility classes, to assess the influence of soil fertility on N2-fixation performance. The legumes were planted with triple super phosphate (TSP) at 30 kg P ha?1, with an extra soyabean plot planted without TSP (soyabean-P), to assess response to P, and no artificial inoculation was done. Legume grain yield, shoot N accumulation, %N derived from N2-fixation, N2-fixation and net N inputs differed significantly (P<0.01) with rainfall and soil fertility. Mean grain yield ranged from 0.86 Mg ha?1, in AEZ 2, to 0.30 Mg ha?1, in AEZ 3, and from 0.78 Mg ha?1, in the high fertility field, to 0.48 Mg ha?1, in the low fertility field. Shoot N accumulation ranged from a maximum of 486 kg N ha?1 in AEZ 2, to a minimum of 10 kg N ha?1 in AEZ 3. Based on shoot biomass estimates, the species fixed 25–90% of their N requirements in AEZ 2, 23–90% in AEZ 1, and 7–77% in AEZ 3. Mean N2-fixation by green manure legumes ranged from 319 kg ha?1 (velvet bean) in AEZ 2 to 29 kg ha?1 (jackbean) in AEZ 3. For the forage legumes, mean N2-fixation ranged from 97 kg N ha?1 for desmodium in AEZ 2 to 39 kg N ha?1 for siratro in AEZ 3, while for the grain legumes, the range was from 172 kg N ha?1 for lablab in AEZ 1 to 3 kg N ha?1 for soyabean-P in AEZ 3. Lablab and groundnut showed consistently greater N2-fixation and net N inputs across agro-ecological and soil fertility gradients. The use of maize as reference crop resulted in lower N2-fixation values than when broad-leaved weed plants were used. The results demonstrate differential contributions of the green manure, forage and grain legume species to soil fertility improvement in different biophysical niches in smallholder farming systems and suggest that appropriate selection is needed to match species with the niches and farmers’ needs.  相似文献   

14.
A range of different species of diazotrophic bacteria has been found in tissues and the rhizosphere of oil palm plants, suggesting a potential to benefit from biological nitrogen fixation (BNF). A few studies have confirmed that plantlets at nursery stage can benefit significantly from BNF after inoculation with Azospirillum spp. but no data are available regarding the benefit from naturally-occurring diazotrophic bacteria in oil palm. The results described here were derived from two pot trials laid out under controlled conditions with plantlets from two important regions for palm oil production in Brazil, as well as from different field sites of mature oil palm plantations. The 15N natural abundance technique was employed to estimate plant dependence on BNF (%Ndfa) by the different ecotypes grown in soil and previously characterized as hosting diazotrophic bacteria. From both pot trials it was possible to identify some ecotypes of high potential for N2-fixation that reached in some cases approximately 50%Ndfa. However, the accuracy of measurement still needs to be improved using more suitable reference plants for pot experiments. Values of δ 15N signals from oil palm and reference plants in the field were inconclusive concerning any benefit from BNF to oil palm, owing to apparently high temporal and spatial variability of δ 15N of the plant-available N in the heterogeneous soil matrix for the different palm and reference plant tested.  相似文献   

15.
16.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

17.
Biological soil crusts (BSCs) are key components of ecosystem productivity in arid lands and they cover a substantial fraction of the terrestrial surface. In particular, BSC N2-fixation contributes significantly to the nitrogen (N) budget of arid land ecosystems. In mature crusts, N2-fixation is largely attributed to heterocystous cyanobacteria; however, early successional crusts possess few N2-fixing cyanobacteria and this suggests that microorganisms other than cyanobacteria mediate N2-fixation during the critical early stages of BSC development. DNA stable isotope probing with 15N2 revealed that Clostridiaceae and Proteobacteria are the most common microorganisms that assimilate 15N2 in early successional crusts. The Clostridiaceae identified are divergent from previously characterized isolates, though N2-fixation has previously been observed in this family. The Proteobacteria identified share >98.5% small subunit rRNA gene sequence identity with isolates from genera known to possess diazotrophs (for example, Pseudomonas, Klebsiella, Shigella and Ideonella). The low abundance of these heterotrophic diazotrophs in BSCs may explain why they have not been characterized previously. Diazotrophs have a critical role in BSC formation and characterization of these organisms represents a crucial step towards understanding how anthropogenic change will affect the formation and ecological function of BSCs in arid ecosystems.  相似文献   

18.
Ståhl  Lena  Nyberg  Gert  Högberg  Peter  Buresh  Roland J. 《Plant and Soil》2002,243(1):103-117
The effects of planted fallows of Sesbania sesban (L.) Merr. and Calliandra calothyrsus (Meissner) on soil inorganic nitrogen dynamics and two subsequent maize crops were evaluated under field conditions in the highlands of eastern Kenya. Continuous unfertilised maize, maize/bean rotation and natural regrowth of vegetation (weed fallow) were used as control treatments. The proportion of symbiotic N2-fixation was estimated by measuring both leaf 15N enrichment and whole-plant 15N enrichment by the 15N dilution technique for Sesbania and Calliandra, using Eucalyptus saligna (Sm.) and Grevillea robusta (A. Cunn) as reference species. Above- and below-ground biomass and N contents were examined in Sesbania, Calliandra, Eucalyptus and Grevillea 22 months after planting. Both the content of inorganic N in the topsoil and the quantity of N mineralised during rainy seasons were higher after the Sesbania fallows than after the other treatments. Compared to the continuous unfertilised maize treatment, both residual crop yields were significantly higher when mineral N (one application of 60 kg N ha–1) was added. Furthermore, the second crop following the Sesbania fallow was significantly higher than the continuous maize crop. The above-ground biomass of the trees at final harvest were 31.5, 24.5, 32.5 and 43.5 Mg ha–1 for the Sesbania, Calliandra, Grevillea and Eucalyptus, respectively. For the total below-ground biomass the values for these same tree species were 11.1, 15.5, 17.7, and 19.1 Mg ha–1, respectively, of which coarse roots (>2 mm), including tap roots, amounted to 70–90%. About 70–90% of the N in Sesbania, and 50–70% in Calliandra, was derived from N2-fixation. Estimates based on leaf 15N enrichment and whole-plant 15N enrichment were strongly correlated. The N added by N2-fixation amounted to 280–360 kg N ha–1 for Sesbania and 120–170 kg N ha–1 for Calliandra, resulting in a positive N balance after two maize cropping seasons of 170–250 kg N ha–1 and 90–140 kg N ha–1, for Sesbania and Calliandra, respectively. All the other treatments gave negative N balances after two cropping seasons. We conclude that Sesbania sesban is a tree species well suited for short duration fallows due to its fast growth, high nutrient content, high litter quality and its ability to fix large amounts of N2 from the atmosphere.  相似文献   

19.
The perennial legume Pueraria phaseoloides is widely used as a cover crop in rubber and oil palm plantations. However, very little knowledge exists on the effect of litter mineralization from P. phaseoloides on its symbiotic N2-fixation. The contribution from symbiotic N2-fixation (Ndfa) and litter N (Ndfl) to total plant N in P. phaseoloides was determined in a pot experiment using a 15N cross-labeling technique. For determination of N2-fixation the non-fixing plant Axonopus compressus was used as a reference. The experiment was carried out in a growth chamber during 9 weeks with a sandy soil and 4 rates of ground litter (C/N=16,2.8% N). P. phaseoloides plants supplied with the highest amount of litter produced 26% more dry matter and fixed 23% more N than plants grown in soil with no litter application, but the percentage of Ndfa decreased slightly, but significantly, from 87 to 84%. The litter N uptake was directly proportional to the rate of application and constituted 10% of total plant N at the highest application rate. Additionally, a positive correlation was found between litter N uptake and the amount of fixed N2. The total recovery of litter N in plants averaged 26% at harvest (shoot + root) and was not affected by the quantity added. A parallel incubation experiment also showed that, as an average of all litter levels, 26% of the litter N was present in the inorganic N pool. The amounts of fertilizer and soil N taken up by plants decreased with litter application, probably due to microbial immobilization and denitrification. It is concluded that, within the litter levels studied, litter mineralization will result in a higher amount of N2-fixed by P. phaseoloides.  相似文献   

20.
The principal contributors of biologically fixed N in natural grassland ecosystems appear to be asymbiotic bacteria and heterocystous cyanobacteria. The environmental factors of light, moisture, and temperature play important roles in the magnitude of the N2-fixation activity. Biological N2-fixation was measured in the Elizabeth's Prairie section of the Lynx Prairie Preserve, Adams County, Ohio, during 15 site visits beginning 29 March through 8 November 1980. In situ N2-fixation activity was measured using the acetylene-reduction technique. The percentage cover of cyanobacterial colonies (Nostoc sp.) was determined using Point-Frame Analysis. Soil and air temperatures and soil water potentials also were measured. Intact soil cores with a surface cover of Nostoc were collected and returned to the laboratory to quantify the effect of decreasing water potential on the N2(C2H2)ase activity of Nostoc. The N2(C2H2)ase activity of Nostoc on the intact soil cores displayed a linear response of approximately 10% decrease in N2(C2H2)ase activity per one bar decrease in soil water potential. The cyanobacteria contributed almost all of the biologically fixed N at the site until late June. From late June through to mid September, heterotrophic diazotrophs played the major role in the N2-fixation activity. These changes are attributed to fluctuations in Nostoc sp. colony cover, temperature, and soil water potentials. Extrapolation of the measured rates, and assuming an average of 10 hr per day of activity, Nostoc sp. is shown to have contributed 4.60 ± 1.17 kg N ha−1 yr−1. Heterotrophic diazotrophs contributed an estimated 3.19 ± 1.18 kg N ha−1 yr−1. The total biological N2-fixation for the site was calculated at 8.2 ± 2.55 kg N ha−1 yr−1, from additional measurements which estimated total diazotrophic activity of the site. These rates of N2-fixation are among the highest reported for temperate grassland habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号