首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in calf cartilage explants were examined. Pulse-chase experiments showed that conversion of low-affinity monomers to the high-affinity form (that is, to a form capable of forming aggregates with 1.6% hyaluronate on Sephacryl S-1000) occurred with a t1/2 of about 5.7 h in free-swelling discs at pH 7.45. Static compression during chase (in pH 7.45 medium) slowed the conversion, as did incubation in acidic medium (without compression). Both effects were dose-dependent. For example, the t1/2 for conversion was increased to about 11 h by either (1) compression from a thickness of 1.25 mm to 0.5 mm or (2) medium acidification from pH 7.45 to 6.99. Oscillatory compression of 2% amplitude at 0.001, 0.01, or 0.1 cycles/s during chase did not, however, affect the conversion. Changes in the hyaluronate-binding affinity of [35S]proteoglycans in these experiments were accompanied by no marked change in the high percentage (approximately 80%) of monomers which could form aggregates with excess hyaluronate and link protein. Since static tissue compression would result in an increased matrix proteoglycan concentration and thereby a lower intra-tissue pH [Gray, Pizzanelli, Grodzinsky & Lee (1988) J. Orthop. Res. 6, 777-792], it seems likely that matrix pH may influence proteoglycan aggregate assembly by an effect on the hyaluronate-binding affinity of proteoglycan monomer. Such a pH mechanism might have a physiological role, promoting proteoglycan deposition in regions of low proteoglycan concentration.  相似文献   

2.
35S-Labeled proteoglycans produced by chondrocytes from immature and mature rabbits were fractionated on associative CsCl gradients. In all cultures, greater than 85% of the incorporated radioactivity was present in the A1 fraction (rho 1.60) as chondroitin sulfate/keratin sulfate-substituted aggregating proteoglycan monomer; the remainder was present in small proteoglycans in the A2, A3, and A4 fractions of low buoyant densities (rho 1.53, 1.45, 1.37, respectively). Detailed glycosaminoglycan analysis of the A2, A3, and A4 fractions showed dermatan sulfate-rich species were present throughout. However, in both immature and mature cultures, 30-45% of the glycosaminoglycans in the A3/A4 combined fractions were present as keratan sulfate, as shown by insensitivity to digestion with chondroitinase ABC, specific digestion with endo-beta-galactosidase, and reactivity with antibody 5D4. Immature and mature chondrocytes synthesized very similar amounts of the low buoyant density keratan sulfate proteoglycan on a per cell basis. Moreover, 51 and 37% of the total keratan sulfate produced by immature and mature chondrocytes, respectively, were present in the low buoyant density proteoglycan. Pulse-chase experiments indicated that the low buoyant density keratan sulfate was not derived from the large aggregating proteoglycan by proteolysis in the extracellular space. The small keratan sulfate proteoglycans appear to be present as a species distinct from the small dermatan sulfate proteoglycans in these cultures in that they can be separated on Q-Sepharose chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent size (40-60 kDa), composition, and heterogeneity of the keratan sulfate proteoglycans suggest that they may be related to the small keratan sulfate proteoglycans of cornea.  相似文献   

3.
Mature rabbit articular cartilage cultures have been used to study the catabolism of aggregating proteoglycan monomers in normal cartilage. During the first 4 days of culture, about 40% of monomers are degraded and lose the ability to bind to hyaluronate. The non-aggregating products (NAgg-PG) have been isolated and compared structurally and immunologically to aggregating monomers (Agg-PG) purified from fresh tissue. The results show that: (1) NAgg-PG are smaller, more heterogeneous in size and have a lower protein/glycosaminoglycan ratio than Agg-PG. (2) NAgg-PG and Agg-PG have a very similar chondroitin sulfate/keratan sulfate ratio. (3) NAgg-PG have 25-50% lower disulfide content than Agg-PG. (4) NAgg-PG have only about 20% of the reactivity of Agg-PG towards a monoclonal antibody (12-20/1-C-6) specific for the hyaluronate binding region of the core protein. These results provide further evidence that proteoglycan catabolism in cartilage explants involves proteolysis of core protein resulting in separation of the hyaluronate binding region from the glycosaminoglycan-rich regions.  相似文献   

4.
Primary cultures of rabbit articular chondrocytes have been maintained for 10 days and labeled with [35S]sulfate, [3H]leucine, and [35S]cysteine in pulse-chase protocols to study the structure and hyaluronate binding properties of newly synthesized proteoglycan monomers. Radiolabeled monomers were purified from medium and cell-layer fractions by dissociative CsCl gradient centrifugation with bovine carrier monomer, and analyzed for hyaluronate binding affinity on Sepharose CL-2B in 0.5 M Na acetate, 0.1% Triton X-100, pH 6.8. Detergent was necessary to prevent self-association of newly synthesized monomers during chromatography. Monomers secreted during a 30-min pulse labeling with [35S]sulfate had a low affinity relative to carrier. Those molecules released into the medium during the first 12 h of chase (about 40% of the total) remained in the low affinity form whereas those retained by the cell layer rapidly acquired high affinity. In cultures where more than 90% of the preformed cell-layer proteoglycan was removed by hyaluronidase digestion before radiolabeling the newly synthesized low affinity monomers also rapidly acquired high affinity if retained in the cell layer. Cultures labeled with amino acid precursors were used to establish the purity of monomer preparations and to isolate core proteins for study. Leucine- or cysteine-labeled core proteins derived from either low or high affinity monomer preparations migrated as a single major species on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with electrophoretic mobility very similar to that of core protein derived from extracted proteoglycan monomer. Purified low affinity monomers were converted to the high affinity form by treatment at pH 8.6; however, this change was prevented by guanidinium-HCl at concentrations above 0.8 M. Conversion to high affinity was also achieved by incubation of monomers in aggregate with hyaluronic acid (HA) at pH 6.8 followed by dissociative reisolation of monomer. At both pH 6.8 and 8.6 the conversion process was slow, requiring up to 48 h for the maximum increase in affinity. It is suggested that the slow increase in HA binding affinity seen during extracellular processing of proteoglycans in cartilage and chondrocyte cultures is the result of an irreversible structural change in the HA binding domain following the binding of monomer to hyaluronate. The available evidence suggests that this change involves the formation or rearrangement of disulfide bonds.  相似文献   

5.
Analytical electrophoresis on polyacrylamide-agarose gels of aggregating proteoglycan monomers from baboon articular cartilage produces two distinct bands, corresponding to two different aggregating monomer populations. A preparative electrophoresis procedure is described for isolating the two monomers. Proteoglycans were extracted from young baboon articular cartilage in 4 M guanidinium chloride containing proteolysis inhibitors and aggregated after hyaluronic acid addition. The aggregates were separated from non-aggregated proteoglycans by isopycnic centrifugation, followed by gel chromatography on Sepharose CL-2B. The monomers of the aggregates were obtained by isopycnic centrifugation under dissociative conditions. Two monomers were separated by preparative electrophoresis on 0.8 % agarose submerged gels. Approximately 60 % of the proteoglycans were recovered from the gel using a freeze-squeeze procedure. Aliquots of the separated monomers gave single bands when submitted to analytical polyacrylamide-agarose gel electrophoresis. Their migration and appearance were similar to that of the two bands present in the non separated preparation of monomers.  相似文献   

6.
Antibodies directed against whole bovine nasal-cartilage proteoglycan and against the hyaluronic acid-binding region and chondroitin sulphate peptides from the same molecule were used in immunodiffusion and immunoelectromigration experiments. Proteoglycans from bovine nasal and tracheal cartilage showed immunological identity, with all three antisera. Proteoglycans from pig hip articular cartilage, dog hip articular cartilage, human tarsal articular cartilage and rat chondrosarcoma reacted with all the antisera and showed immunological identity with the corresponding structures isolated from bovine nasal-cartilage proteoglycans. In contrast, proteoglycans from rabbit articular cartilage, rabbit nasal cartilage and cultured chick limb buds did not react with the antibodies directed against the hyaluronic acid-binding region, though reacting with antibodies raised against whole proteoglycan monomer and against chondroitin sulphate peptides. All the proteoglycans gave two precipitation lines with the anti-(chondroitin sulphate peptide) antibodies. Similarly, the proteoglycans reacting with the anti-(hyaluronic acid-binding region) antibodies gave two precipitation lines. The results indicate the presence of at least two populations of aggregating proteoglycan monomers in cartilage. The relative affinity of the antibodies for cartilage proteoglycans and proteoglycan substructures from various species was determined by radioimmunoassay. The affinity of the anti-(hyaluronic acid-binding region) antibodies for the proteoglycans decreased in the order bovine, dog, human and pig cartilage. Rat sternal-cartilage and rabbit articular-cartilage proteoglycans reacted weakly, whereas chick limb-bud and chick sternal-cartilage proteoglycans did not react. In contrast, the affinity of antibodies to chondroitin sulphate peptides for proteoglycans increased in the order bovine cartilage, chick limb bud and chick sternal cartilage, dog cartilage, rat chondrosarcoma, human cartilage, pig cartilage, rat sternal cartilage and rabbit cartilage.  相似文献   

7.
目的:探讨低温保存组织工程化软骨在喉狭窄功能重建中的应用价值。方法:取3周龄新西兰兔关节软骨细胞,体外培养,取第2代对数生长期培养细胞,制成细胞悬液,调整软骨细胞悬液浓度约为5×10^7个/ml左右,接种于PGA三维支架材料上,复合物体外培养2周后冻存,冻存6个月后解冻复苏,再行体外培养观察,2周后接种于已建立的喉甲状软骨缺损模型的软骨缺损处,并设对照组。术后12周取材,行大体及组织学观察。结果:经低温冻存的组织工程化软骨生长良好,组织学观察有软骨形成,与周围软骨组织结合紧密,与非冻存组相比差异无统计学意义。结论:深低温冻存对组织工程化软骨的生物活性无明显的影响,低温冻存的组织工程化软骨可用于喉软骨缺损的修复,重建喉功能。  相似文献   

8.
The synthesis and distribution of hyaluronate and proteoglycan were studied in bovine articular cartilage in short-term explant culture with [3H]acetate and H2(35)SO4 as precursors. The incorporation of [3H]acetate into hyaluronate and sulphated glycosaminoglycans was linear with time, except that hyaluronate synthesis showed a marked lag at the beginning of the incubation. [3H]Hyaluronate represented 4-7% of the total [3H]glycosaminoglycans synthesized over a 6 h period. However, the distributions of [3H]hyaluronate and 3H-labelled sulphated glycosaminoglycans were different: about 50% of the newly synthesized [3H]hyaluronate appeared in the medium, compared with less than 5% of the 3H-labelled sulphated proteoglycans. A pulse-chase experiment revealed that the release of newly synthesized [3H]hyaluronate from cartilage was rapid. No difference was observed in the distribution of [3H]hyaluronate between medium and tissue by cartilage from either the superficial layer or the deep layer of articular cartilage. When articular cartilage was incubated with 0.4 mM-cycloheximide, proteoglycan synthesis was markedly inhibited, whereas the synthesis of hyaluronate was only partially inhibited and resulted in more of the newly synthesized hyaluronate being released into the medium. Analysis of the hydrodynamic size of [3H]hyaluronate isolated from cartilage on Sephacryl-1000 revealed one population that was eluted as a broad peak (Kav. less than 0.7), compared with two populations (Kav. greater than 0.5 and less than 0.5) appearing in the medium of cultures. These data suggest that hyaluronate is synthesized in excess of proteoglycan synthesis and that the hyaluronate that is not complexed with proteoglycans is rapidly lost from the tissue.  相似文献   

9.
Monoclonal antibodies were prepared that recognize different age-related epitopes on proteoglycan subunits of high buoyant density isolated from human epiphysial and articular cartilages. Antibody EFG-4 (IgG1) recognizes a proteinase-sensitive segment associated with the core protein. Antibody BCD-4 (IgG1) reacts with keratan sulphate bound to core protein. Both epitopes are minimally expressed in foetal cartilage and increase with age after birth to become maximally expressed in adult cartilage by about 30 years of age. In contrast, monoclonal antibody alpha HFPG-846 (IgM) recognizes a core-protein-related epitope that is maximally expressed in young foetal cartilage, declines up to birth and thereafter and is almost absent after about 30 years of age. Antibody alpha HFPG-846 was used to isolate by immuno-affinity chromatography two subpopulations of proteoglycan subunits from a 16-year-old-human cartilage proteoglycan subunit preparation. Only the antibody-unbound population showed a significant reaction with antibodies EGF-4 and BCD-4. The amino acid and carbohydrate compositions of these proteoglycan fractions were different, and one (antibody-bound) resembled those of foetal and the other (antibody-unbound) resembled those of adult proteoglycans isolated from 24-27-week-old-foetal and 52-56-year-old-adult cartilage respectively. These observations demonstrate that human cartilages contain at least two chemically and immunochemically distinct populations of proteoglycans, the proportions and content of which are age-dependent. It is likely that these populations represent the products of different genes, though their heterogeneity may be compounded by the result of different post-translation modifications.  相似文献   

10.
Proteoglycans were extracted under nondissociative conditions from superficial and deeper layers of dog normal articular cartilage. The purified a-A1 preparations were characterized by velocity gradient centrifugation. Superficial specimens exhibited an abundant population of slow sedimenting aggregates whereas the aggregates of deeper preparations sedimented as two well-defined families of molecules. These dissimilarities in the size distribution of the aggregates observed between superficial and deeper a-A1 preparations derived most of all from differences in their content of hyaluronate and link proteins: (a) superficial preparations contained twice as much hyaluronate as deeper specimens; (b) superficial aggregates were link-free and unstable at pH 5.0 whereas deeper preparations contained link-proteins and their faster sedimenting aggregates were stabilized against dissociation at pH 5.0. In these proteoglycan preparations from different cartilage layers, the monomers exhibited an identical capacity for aggregation and the hyaluronate molecules displayed quite similar molecular weight (Mr = 5 x 10(5] and aggregating capacity. These observations as well as aggregating studies conducted with highly purified link protein and purified hyaluronate specimens of different molecular weights support the following conclusions: (a) link protein not only stabilizes proteoglycan aggregates but also enhances the aggregating capacity of hyaluronate; (b) for all practical purposes, the slow sedimenting aggregates represent a secondary complex of hyaluronate and proteoglycan monomers whereas the fast sedimenting aggregates may be considered as a ternary complex wherein link protein stabilizes the hyaluronate-proteoglycans interaction; (c) the distinctive heterogeneity of articular cartilage can be related to structurally different proteoglycan aggregates. The structural dissimilarities observed between superficial and deeper aggregates could reflect the different macromolecular organization of the proteoglycan molecules in the territorial and interterritorial matrices, respectively.  相似文献   

11.
Pig articular cartilage was maintained in culture for 3 days with and without porcine interleukin 1. The proteoglycans remaining in the cartilage and those released into the medium were analysed by using radioimmunoassays for the hyaluronate-binding region, link protein and keratan sulphate. In interleukin 1-treated cultures after 3 days there was 38% release of total glycosaminoglycans into the medium, 18% release of binding region, 14% release of link protein and 20% release of keratan sulphate epitope, whereas in control cultures the proportions released were much less (16, 9, 10 and 7% respectively). Characterization of the proteoglycans in the media after 1.5 days and 3 days of culture showed that interleukin 1 promoted the release of proteoglycan of large average size and also the release of link protein and of low-Mr binding region which was unattached to proteoglycan. Both the link protein and binding region released were able to bind to exogenously added hyaluronate, whereas the proteoglycan in the medium was not. The proteoglycans extracted from cultured cartilage were similar to those from fresh cartilage: they contained a high proportion of aggregating proteoglycans and some low-Mr binding region. The proportion of this binding region extracted from the interleukin 1-treated cartilage was increased. The presence of interleukin 1 in the cultures therefore appeared to increase the rate of proteolytic degradation of proteoglycan in the matrix and to lead to a more rapid loss of intact binding region, of link protein and of large proteoglycan fragments into the medium.  相似文献   

12.
Purified proteoglycans extracted from pig laryngeal cartilage in 0.15 M-NaCl and 4 M-guanidinium chloride were analysed and their amino acid compositions determined. Selective modification of amino acid residues on the protein core confirmed that binding to hyaluronate was a function of the protein core, and was dependent on disulphide bridges, intact arginine and tryptophan residues, and epsilon-amino groups of lysine. Fluorescence measurement suggested that tryptophan was not involved in direct subsite interactions with the hyaluronate. The polydispersity in size and heterogeneity in composition of the aggregating proteoglycan was compatible with a structure based on a protein core containing a globular hyaluronate-binding region and an extended region of variable length also containing a variable degree of substitution with chondroitin sulphate chains. The non-aggregated proteoglycan extracted preferentially in 0.15 M-NaCl, which was unable to bind to hyaluronate, contained less cysteine and tryptophan than did other aggregating proteoglycans and may be deficient in the hyaluronate-binding region. Its small average size and low protein and keratan sulphate contents suggest that it may be a fragment of the chondroitin sulphate-bearing region of aggregating proteoglycan produced by proteolytic cleavage of newly synthesized molecules before their secretion from the cell.  相似文献   

13.
Chondrocytes were isolated from the auricular cartilage of rabbits, aged 1 week to 30 months, and grown in short-term cell culture. The cells from the 1-week animals were small, polygonal, and mononucleated, while the chondrocytes from the older animals were larger, rounded, and frequently binucleated. The synthesis of proteoglycans, collagen, and elastin was determined by isotope incubation. Chemical characterization of the proteoglycans was also performed. The production of the matrix macromolecules showed a clear age dependence with peak synthesis occurring at different ages. Proteoglycans were actively synthesized by chondrocytes from all age groups with a broad maximum between 2 weeks and 5 months followed by a sharp decline to about 50% of the 1-week level at 12–30 months. Collagen synthesis peaked at 2 weeks, declining progressively thereafter to about 60% of the 1-week level at 30 months. Elastin synthesis was highest in the 1-week cultures and thereafter fell quickly to very low levels. In all age groups the chondrocytes synthesized predominantly cartilage-typic proteoglycans, i.e., large aggregate forming molecules containing chondroitin sulfate. Monomers and aggregates showed a size maximum at 2–8 weeks. The degree of sulfation of the chondroitin sulfate and the proportion of 6-sulfate increased with age. These findings support the concept of “age programs” for the biosynthesis and turnover of different matrix macromolecules.  相似文献   

14.
Chondrocytes were isolated from the articular cartilage of rabbits aged between 6 and 50 weeks and labelled with [35S]sulphate after 48 h in monolayer culture. The percentage of the total proteoglycan monomers synthesized by each culture that were present as link-stabilized aggregates was shown to be about 83% at 6, 9 and 12 weeks, 73% at 15 weeks, 48% at 30 weeks and 32% at 50 weeks. The proliferative activity of the cells in culture also decreased markedly with the age of the donor. The results suggest that aging of chondrocytes in vivo is accompanied by a decrease in their capacity for link-protein synthesis.  相似文献   

15.
Turnover of proteoglycans in cultures of bovine articular cartilage   总被引:8,自引:0,他引:8  
Proteoglycans in cultures of adult bovine articular cartilage labeled with [35S]sulfate after 5 days in culture and maintained in medium containing 20% fetal calf X serum had longer half-lives (average 11 days) compared with those of the same tissue maintained in medium alone (average 6 days). The half-lives of proteoglycans in cultures of calf cartilage labeled after 5 days in culture and maintained in medium with serum were considerably longer (average 21 days) compared to adult cartilage. If 0.5 mM cycloheximide was added to the medium of cultures of adult cartilage, or the tissue was maintained at 4 degrees C after labeling, the half-lives of the proteoglycans were greater, 24 and greater than 300 days, respectively. Analyses of the radiolabeled proteoglycans remaining in the matrix of the tissue immediately after labeling the tissue and at various times in culture revealed two main populations of proteoglycans; a large species eluting with Kav of 0.21-0.24 on Sepharose CL-2B, of high bouyant density and able to form aggregates with hyaluronate, and a small species eluting with a Kav of 0.63-0.70 on Sepharose CL-2B, of low buoyant density, containing only chondroitin sulfate chains, and unable to form aggregates with hyaluronate. The larger proteoglycan had shorter half-lives than the smaller proteoglycan; in cartilage maintained with serum, the half-lives were 9.8 and 14.5 days, respectively. Labeling cartilage with both [3H]leucine and [35S]sulfate showed the small proteoglycan to be a separate synthetic product. The size distribution of 35S-labeled proteoglycans lost into the medium was shown to be polydisperse on Sepharose CL-2B, the majority eluting with a Kav of 0.27 to 0.35, of high buoyant density, and unable to aggregate with hyaluronate. The size distribution of glycosaminoglycans from 35S-labeled proteoglycans appearing in the medium did not differ from that associated with labeled proteoglycans remaining in the matrix.  相似文献   

16.
Confluent cultures of mouse aortic endothelial (END-D) were incubated with either [35S]methionine or 35SO4 2-, and the radiolabelled proteoglycans in media and cell layers were analysed for their hyaluronate-binding activity. The proteoglycan subfraction which bound to hyaluronate accounted for about 18% (media) and 10% (cell layers) of the total 35S radioactivity of each proteoglycan fraction. The bound proteoglycan molecules could be dissociated from the aggregates either by digestion with hyaluronate lyase or by treatment with hyaluronate decasaccharides. Digestion of [methionine-35S]proteoglycans with chondroitinase and/or heparitinase, followed by SDS/polyacrylamide-gel electrophoresis, indicated that the medium and cell layer contain at least three chondroitin sulphate proteoglycans, one dermatan sulphate proteoglycan, and two heparan sulphate proteoglycans which differ from one another in the size of core molecules. Among these, only the hydrodynamically large chondroitin sulphate species with an Mr 550,000 core molecule was shown to bind to hyaluronate. A very similar chondroitin sulphate proteoglycan capable of binding to hyaluronate was also found in cultures of calf pulmonary arterial endothelial cells (A.T.C.C. CCL 209). These observations, together with the known effects of hyaluronate on various cellular activities, suggest the existence of possible specialized functions of this proteoglycan subspecies in cellular processes characteristic of vascular development and diseases.  相似文献   

17.
The distribution of small proteoglycans of high relative electrophoretic mobility in cartilage of various species and of different ages was studied. Proteoglycans extracted by 4 M guanidinium chloride were purified by ion-exchange chromatography and assessed by gel electrophoresis. Proteoglycans fractionated by equilibrium density gradient centrifugation under ‘dissociative’ conditions were similarly purified and assessed. A rapid migrating population was found in articular cartilages of young humans, baboons, calfs, pigs, rabbits, rats, chickens and in mandibular and vertebral cartilages of dog-fish. It was not detected in unfractionated proteoglycans extracted from fetal rat, pig, calf, baboon and human cartilages. In baboon and human fetal cartilages of advanced gestational age, however, small amounts of the rapid population were present being detected in the low density fractions of dissociative gradients. The rapid migrating population was not found either in unfractionated or in fractionated proteoglycans obtained from articular cartilages of humans aged over 40. It was absent from human osteoarthritic cartilages but was detected even at advanced age in cartilages covering osteophytes.  相似文献   

18.
The fragments of minor collagens of cartilages, called HMW and LMW, were isolated after pepsin treatment of sternal cartilages of young chickens and were shown to be entirely triple-helical molecules as judged by their circular dichroic spectra. Studies on renaturation kinetics of HMW suggested that the interchain disulfide bonds in HMW reside at one of the ends of the so-called long arm. Polyclonal antibodies against HMW were raised and affinity purified. These antibodies did not cross-react with type II collagen nor with other minor collagens such as LMW and 1 alpha, 2 alpha, 3 alpha collagen in native or denatured structure. The antibodies were used to identify HMW-related molecules which were synthesized by embryonic chick cartilages in vitro. Some of these molecules were secreted into the organ culture medium and could be recovered from it by ammonium sulfate precipitation. Polyacrylamide gel electrophoresis of this precipitate gave one band of high molecular weight which could be reduced to two bands migrating slightly faster than the alpha 1(II) chain when identified by immunoblotting. These bands could also be identified among about six radiolabelled polypeptides present in the ammonium sulfate precipitate of medium proteins when analysed by polyacrylamide gel electrophoresis followed by fluorography. The same polypeptides could be recovered from the medium by immunoprecipitation with anti-HMW antibodies. Their presence in cartilage tissue was shown by immunoblotting of material extracted from cartilage tissue and separated on polyacrylamide gels. We suggest that the protein containing these polypeptide chains represents the parent molecule of the peptic fragment HMW as it is synthesized in vivo and have designated it p-HMW-collagen.  相似文献   

19.
The addition of proteinase inhibitors (1 mM phenylmethylsulfonyl fluoride, 10 mM N-ethylmaleimide, 0.25 mM benzamidine hydrochloride, 6.25 mM EDTA, 12.5 mM 6-aminohexanoic acid and 2 mM iodoacetic acid) to explant cultures of adult bovine articular cartilage inhibits proteoglycan synthesis as well as the loss of the macromolecule from the tissue. Those proteoglycans lost to the medium of explant cultures treated with proteinase inhibitors were either aggregates or monomers with functional hyaluronic acid-binding regions, whereas proteoglycans lost from metabolically active tissue also included a population of monomers that were unable to aggregate with hyaluronate. Analysis of the core protein from proteoglycans lost into the medium of inhibitor-treated cultures showed the same size distribution as the core proteins of proteoglycans present in the extracellular matrix of metabolically active cultures. The core proteins of proteoglycans appearing in the medium of metabolically active cultures showed that proteolytic cleavage of these macromolecules occurred as a result of their loss from the tissue. Explant cultures of articular cartilage maintained in medium with proteinase inhibitors were used to investigate the passive loss of proteoglycan from the tissue. The rate of passive loss of proteoglycan from the tissue was dependent on surface area, but no difference in the proportion of proteoglycan aggregate to monomer appearing in the medium was observed. Furthermore, proteoglycans were lost at the same rate from the articular and cut surfaces of cartilage. Proteoglycan aggregates and monomer were lost from articular cartilage over a period of time, which indicates that proteoglycans are free to move through the extracellular matrix of cartilage. The movement of proteoglycans out of the tissue was shown to be temperature dependent, but was different from the change of the viscosity of water with temperature, which indicates that the loss of proteoglycan was not solely due to diffusion. The activation energy for the loss of proteoglycans from articular cartilage was found to be similar to the binding energies for electrostatic and hydrogen bonds.  相似文献   

20.
Proteoglycans were extracted from the extracellular matrix of cultures of embryonic chick chondrocytes grown at high density and were purified by CsCl density gradient centrifugation. The chemical, physical and hyaluronate binding properties of the proteoglycans were similar to those observed in proteoglycans from other hyaline cartilages. Proteoglycans in the media were also purified and on analysis showed three populations of proteoglycans to be present. One population had the physical characteristics of a typical proteoglycan subunit and bound hyaluronate, the other two populations were unable to complex with hyaluronate but one had the physical characteristics of the proteoglycan subunit and the other was of smaller molecular weight. The small molecular weight appears to be a product of the enzymatic degradation of the larger molecular weight species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号