首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

The application of exogenous 24-epibrassinolide promotes Brassinosteroids intracellular signalling in cucumber, which leads to differentially expressed proteins that participate in different life process to relieve Ca(NO 3 ) 2 damage.

Abstract

NO3 ? and Ca2+ are the main anion and cation of soil secondary salinization during greenhouse cultivation. Brassinosteroids (BRs), steroidal phytohormones, regulate various important physiological and developmental processes and are used against abiotic stress. A two-dimensional electrophoresis gel coupled with MALDI-TOF/TOF MS was performed to investigate the effects of exogenous 24-epibrassinolide (EBL) on proteomic changes in cucumber seedling roots under Ca(NO3)2 stress. A total of 80 differentially accumulated protein spots in response to stress and/or exogenous EBL were identified and grouped into different categories of biological processes according to Gene Ontology. Under Ca(NO3)2 stress, proteins related to nitrogen metabolism and lignin biosynthesis were induced, while those related to cytoskeleton organization and cell-wall neutral sugar metabolism were inhibited. However, the accumulation of abundant proteins involved in protein modification and degradation, defence mechanisms against antioxidation and detoxification and lignin biosynthesis by exogenous EBL might play important roles in salt tolerance. Real-time quantitative PCR was performed to investigate BR signalling. BR signalling was induced intracellularly under Ca(NO3)2 stress. Exogenous EBL can alleviate the root indices, effectively reduce the Ca2+ content and increase the K+ content in cucumber roots under Ca(NO3)2 stress. This study revealed the differentially expressed proteins and BR signalling-associated mRNAs induced by EBL in cucumber seedling roots under Ca(NO3)2 stress, providing a better understanding of EBL-induced salt resistance in cucumber seedlings. The mechanism for alleviation provides valuable insight into improving Ca(NO3)2 stress tolerance of other horticultural plants.
  相似文献   

2.

Key message

This study focuses on the impact of carbohydrate metabolism and endogenous polyamines levels in leaves of cucumber seedlings under salt stress by exogenous BRs.

Abstract

The effects of 24-epibrassinolide (EBL) on carbohydrate metabolism and endogenous content of polyamines were investigated in cucumber seedlings (Cucumis sativus L. cv. Jinyou No. 4) exposed to salinity stress [80 mM Ca(NO3)2]. Spraying of exogenous EBL partially enhanced the enzyme activities of sucrose phosphate synthase, sucrose synthase and acid invertase; thus, raising the level of sucrose, fructose and total soluble sugars. The amylase activity was also increased by EBL, companied by the rising of sucrose level. These results indicated that EBL improved the carbohydrate metabolism of cucumber under Ca(NO3)2 stress. Moreover, EBL raised the levels of soluble conjugated and insoluble bound polyamines while lowered the free polyamines content, particularly putrescine. Our experiment demonstrated that exogenous EBL elevated stability of cellular membrane and positively improve the carbohydrate metabolism in cucumber growing under Ca(NO3)2 stress.  相似文献   

3.
In this research, we investigated the effects of grafting on intermediate metabolites and key enzymes of glycolysis and the tricarboxylic acid (TCA) cycle in self-grafted and salt-tolerant pumpkin rootstock-grafted cucumber seedlings supplied with nutrient solution and subjected to 80 mM Ca(NO3)2 stress for 6 days. Ca(NO3)2 stress induced accumulation of 3-phosphoglycerate (3-PGA) and phosphoenolpyruvate (PEP) in the leaves of self-grafted cucumber seedlings and enhanced the activities of phosphoenolpyruvate carboxylase (PEPC) and enolase (ENO). Succinic acid and malic acid contents and isocitrate dehydrogenase, succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) activities in self-grafted seedlings were significantly decreased by Ca(NO3)2 stress. In addition, activities of PEPC, ENO, SDH, and MDH and contents of glycolysis intermediate metabolites (citric, succinic, and malic acids) were significantly higher in leaves of rootstock-grafted seedlings compared with those in self-grafted seedlings under saline conditions. Furthermore, leaf adenosine triphosphate (ATP) content of rootstock-grafted seedlings was relatively higher than that in self-grafted plants under salt stress, with an opposite effect observed on adenosine diphosphate content. These results indicate that rootstock grafting alleviates Ca(NO3)2 stress-induced inhibition of the glycolytic pathway and the TCA cycle in cucumber seedling leaves, which may aid the respiratory metabolism of cucumber seedlings and help maintain a high ATP synthesis level, thereby increasing the biomass of cucumber seedlings and enhancing their salt tolerance.  相似文献   

4.
The effects of Ca(NO3)2 stress on biomass production, oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants were investigated. Results showed that when exposed to 80 mM Ca(NO3)2 stress, the biomass production reduction in non-grafted plants was more significant than that of grafted plants. Under Ca(NO3)2 stress, superoxide anion radical (O2) producing rate, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents of non-grafted plants roots were significantly higher than those of grafted plants, however, nitrate (NO3 ), ammonium (NH4 +) and proline contents, superoxide dismutase (SOD, EC1.15.1.1), peroxidase (POD, EC1.11.1.7), catalase (CAT, EC1.11.1.6) and arginine decarboxylase (ADC, EC 4.1.1.19) activities of grafted plants roots were significantly higher than those of non-grafted plants. Regardless of stress, free, conjugated and bound polyamine contents in roots of grafted plants were significantly higher than those of non-grafted plants. The possible roles of antioxidant enzymes, prolines and polyamines in adaptive mechanism of tomato roots to Ca(NO3)2 stress were discussed. Gu-Wen Zhang and Zheng-Lu Liu contributed equally to this work.  相似文献   

5.
6.
7.
Shao  QiaoSai  Shu  Sheng  Du  Jing  Yuan  YingHui  Xing  WenWen  Guo  ShiRong  Sun  Jin 《Plant Molecular Biology Reporter》2016,34(1):303-317

The growth and productivity of cucumber are severely affected by salinity. To understand the complex salt response mechanism, the physiological and biochemical responses of cucumber seedlings to iso-osmotic NaCl and Ca(NO3)2 stresses were investigated. In this study, the biomass was significantly decreased under iso-osmotic NaCl and Ca(NO3)2 stresses, and the inhibitory effect of Ca(NO3)2 stress was less than that of NaCl stress. The soluble protein contents were increased under Ca(NO3)2 stress, whereas they were decreased after 6 days of NaCl stress. A sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis revealed that there were 14 differentially expressed protein bands in roots under iso-osmotic NaCl and Ca(NO3)2 stresses at 0, 3, 6, and 9 days, and seven protein bands were little expressed under NaCl stress at 6 and 9 days. Based on these results, 2-D gel electrophoresis was used to separate cucumber root proteins in response to iso-osmotic NaCl and Ca(NO3)2 stresses at 3 days. A total of 43 protein spots changed under salt stress. Of these proteins, 33 were successfully identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography electro-spray ionization tandem mass spectrometry (LC-ESI-MS/MS) and categorized into classes, including those corresponding to antioxidants and defense-related proteins and energy and metabolism. The functions of the significantly differentially expressed root proteins were analyzed, which may facilitate a better understanding of different salt response mechanisms, and we suggest that cucumber seedlings showed a more powerful ability to resist Ca(NO3)2 stress.

  相似文献   

8.
Using open top chambers, the effects of elevated O3 (80 nmol mol−1) and elevated CO2 (700 μmol mol−1), alone and in combination, were studied on young trees of Quercus mongolica. The results showed that elevated O3 increased malondialdehyde content and decreased photosynthetic rate after 45 days of exposure, and prolonged exposure (105 days) induced significant increase in electrolyte leakage and reduction of chlorophyll content. All these changes were alleviated by elevated CO2, indicating that oxidative stress on cell membrane and photosynthesis was ameliorated. After 45 days of exposure, elevated O3 stimulated activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11), but the stimulation was dampened under elevated CO2 exposure. Furthermore, ascorbate (AsA) and total phenolics contents were not higher in the combined gas treatment than those in elevated O3 treatment. It indicates that the protective effect of elevated CO2 against O3 stress was achieved hardly by enhancing ROS scavenging ability after 45 days of exposure. After 105 days of exposure, elevated O3 significantly decreased activities of SOD, catalase (CAT, EC 1.11.1.6) and APX and AsA content. Elevated CO2 suppressed the O3-induced decrease, which could ameliorate the oxidative stress in some extent. In addition, elevated CO2 increased total phenolics content in the leaves both under ambient O3 and elevated O3 exposure, which might contribute to the protection against O3-induced oxidative stress as well.  相似文献   

9.
Nitromethane (NM, CH3NO2) is a widely studied energetic material, and its decomposition mechanism attracts great interest. In this work, bimolecular reactions between NO2 and nine intermediates generated during the decomposition of NM were investigated by computational chemistry methods. The mechanisms of the reactions were analyzed. The results revealed that these reactions possess small barriers and can easily occur, so they may be responsible for NO2 loss during the decomposition of NM.  相似文献   

10.
The intriguing decompositions of nitro-containing explosives have been attracting interest. While theoretical investigations have long been concentrated mainly on unimolecular decompositions, bimolecular reactions have received little theoretical attention. In this paper, we investigate theoretically the bimolecular reactions between nitromethane (CH3NO2)—the simplest nitro-containing explosive—and its decomposition products, such as NO2, NO and CO, that are abundant during the decomposition process of CH3NO2. The structures and potential energy surface (PES) were explored at B3LYP/6-31G(d), B3P86/6-31G(d) and MP2/6-311?+?G(d,p) levels, and energies were refined using CCSD(T)/cc-pVTZ methods. Quantum chemistry calculations revealed that the title reactions possess small barriers that can be comparable to, or smaller than, that of the initial decomposition reactions of CH3NO2. Considering that their reactants are abundant in the decomposition process of CH3NO2, we consider bimolecular reactions also to be of great importance, and worthy of further investigation. Moreover, our calculations show that NO2 can be oxidized by CH3NO2 to NO3 radical, which confirms the conclusion reached formerly by Irikura and Johnson [(2006) J Phys Chem A 110:13974–13978] that NO3 radical can be formed during the decomposition of nitramine explosives.  相似文献   

11.
The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new agents to combat cyanobacterial bloom formation in water reservoirs.  相似文献   

12.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

13.
The effect of exogenous hydrogen peroxide (H2O2) on mitotic activity and chromosomal aberrations in root tip meristems of barley (Hordeum vulgare L. var. Tokak 157/37) germinated under salinity was analyzed. The inhibitory effect of salinity on mitotic index and the frequency of chromosomal aberrations increased with increasing salt concentration (0.00 control, 0.35, 0.40, 0.45 M, molal NaCl). The frequency of chromosomal aberrations of seeds germinated in medium with 0.40 M NaCl after pretreatment with H2O2 (30 μM, micromolal) was significantly higher than the control group. The highest concentration of NaCl (0.45 M) together with H2O2 caused total inhibition of germination. In this study, the intention was to determine the performance of H2O2 in alleviating detrimental effect of salt stress on mitotic activity and chromosomal aberrations. However, H2O2 did not reduce the detrimental effect of NaCl on these parameters. Also, it caused higher chromotoxic effect compared to those of control groups.  相似文献   

14.
15.
16.
为探讨外源油菜素内酯(brassinosteroid,BR)诱导黄瓜幼苗对Ca(NO3)2胁迫抗性的效果,研究了3种外源BR施用方法(0.01mg·L-1 BR浸种、0.1mg·L-1 BR喷叶及其二者结合施用)对Ca(NO3)2胁迫(60mmol·L-1)下黄瓜幼苗生长、生理活动以及光合作用的影响。结果表明:(1)3种外源BR方法处理后,Ca(NO3)2胁迫下的黄瓜幼苗株高、茎粗、展开叶片数、叶面积、干重含水量均显著提高,同时其叶片游离脯氨酸和可溶性糖含量上升,过氧化物酶活性提高,而其丙二醛(MDA)含量趋于无Ca(NO3)2胁迫对照的水平;(2)外源BR处理还提高了Ca(NO3)2胁迫下黄瓜幼苗的净光合速率、蒸腾速率和气孔导度,却抑制了Ca(NO3)2胁迫下胞间CO2浓度的升高。研究认为,适宜浓度的外源BR浸种和喷叶处理均可有效增强黄瓜幼苗渗透调节能力,降低细胞膜质过氧化伤害程度,提高抗氧化酶活性和光合效率,从而表现出对Ca(NO3)2胁迫的抗性,并以操作简便、用量极低的0.01mg·L-1 BR浸种方法效果最佳。  相似文献   

17.
It was shown that tobacco leaf treatment with 100 mM H2O2 increased their content of endogenous H2O2 and activities of catalase and hydrolases (acid phosphatase, proteases, and RNase) and also caused various changes in the cell structure. In this case, programmed cell death (PCD) occurred in some cells, which was observed as chromatin condensation, cytoplasm collapse, etc. In the meantime, many cells displayed organelle activation rather than PCD. It is suggested that cells that undergo H2O2-dependent PCD release signaling molecules inducing protective mechanisms against oxidative stress in neighboring cells not exhibiting PCD.  相似文献   

18.
Drought stress is one of the main environmental factors limiting plant growth and productivity of many crops. Elevated carbon dioxide concentration (eCO2) can ameliorate, mitigate, or compensate for the negative impact of drought on plant growth and enable plants to remain turgid and functional for a longer period. In order to investigate the combined effects of eCO2 and drought stress on photosynthetic performance and leaf structures, we analyzed photosynthetic characteristics and structure and ultrastructure of cucumber leaves. The decline in net photosynthetic rate under moderate drought stress occurred due to stomatal limitation alone, while under severe drought stress, it was the result of stomatal and nonstomatal limitations. Conversely, eCO2 improved photosynthetic performance under moderate drought stress, increased the lengths of the palisade cells and the number of chloroplasts per palisade cell under severe drought stress, and significantly increased the grana thickness under moderate drought stress. Additionally, eCO2 significantly decreased stomatal density, stomatal widths and stomatal aperture on the abaxial surface of leaves under moderate drought stress. In conclusion, eCO2 can alleviate the negative effects of drought stress by improving the drought resistance of cucumber seedlings through stomatal modifications and leaf structure.  相似文献   

19.
 以日本引进的设施专用耐盐茄(Solanum melongena)品种‘Torvum Vigor’为砧木, 栽培茄(S. torvum)品种‘苏崎茄’为接穗, 用营养液栽培, 对80 mmol&;#8226;L–1 Ca(NO3)2胁迫下茄子嫁接苗和自根苗叶片抗坏血酸-谷胱甘肽循环系统中抗氧化酶活性和抗氧化物及H2O2含量进行比较。结果表明, Ca(NO3)2胁迫下茄子幼苗叶片H2O2含量有所增加, 但嫁接苗叶片H2O2含量显著低于自根苗。Ca(NO3)2胁迫下嫁接苗叶片抗氧化酶(APX、DHAR和GR)活性、AsA和GSH再生率、氧化还原力(AsA/DHA值和GSH/GSSG值)均显著高于自根苗。综上所述, Ca(NO3)2胁迫下嫁接苗保持良好的AsA-GSH循环效率, 清除H2O2效率较高, 细胞受氧化损伤程度较轻, 表现出较强的耐盐性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号