共查询到20条相似文献,搜索用时 10 毫秒
1.
Zhehao Chen Mengting Li Ye Yuan Jiangqin Hu Yanjun Yang Jiliang Pang Lilin Wang 《Plant Cell, Tissue and Organ Culture》2017,131(1):107-118
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation. 相似文献
2.
Liping Xing Li Gao Qiguang Chen Haiyan Pei Zhaocan Di Jin Xiao Haiyan Wang Lulin Ma Peidu Chen Aizhong Cao Xiue Wang 《Plant Growth Regulation》2018,84(3):561-571
Wheat Fusarium Head Blight (FHB), mainly caused by Fusarium graminearum (F.g), is a destructive fungal disease worldwide. FHB can not only cause considerable reduction in yield, but more seriously, can contaminate grain by trichothecene toxins released by the fungus. Here, we report new insights into the function and underlying mechanisms of a UDP-glycosyltransferase gene, Ta-UGT 3 , that is involved in FHB resistance in wheat. In our previous study, Ta-UGT 3 was found to enhance host tolerance against deoxynivalenol (DON) in Arabidopsis. In this study, four transgenic lines over-expressing Ta-UGT 3 in a FHB highly susceptible wheat variety, Alondra’s, were obtained and characterized. 3 years of assays using single floret inoculation with F.g indicated that all four transgenic lines exhibited significantly enhanced type II resistance to FHB and less DON accumulation in the grains compared to the untransformed control. Histological observation using GFP labelled F.g was in agreement with the above test results since over-expression of Ta-UGT 3 dramatically inhibited expansion of F.g. To explore the putative mechanism of resistance mediated by Ta-UGT 3 , microarray analysis, qRT-PCR and hormone measurements were performed. Microarray analysis showed that DON up-regulated genes, such as TaNPR1, in the susceptible control, and down-regulated genes in F.g inoculated transgenic lines, while qRT-PCR showed that some defence related genes were up-regulated in F.g inoculated transgenic lines. Ta-UGT 3 over-expression also changed the contents of the endogenous hormones SA and JA in the spikes. These data suggest that Ta-UGT 3 positively regulates the defence responses to F.g, perhaps by regulating defence-related and DON-induced downstream genes. 相似文献
3.
4.
5.
Jiri Simek Jiri Tuma Vlastimil Dohnal Karel Musil Zuzana Ducaiová 《Acta Physiologiae Plantarum》2016,38(7):172
In this pot experiment, cucumbers (Cucumis sativus L.) were grown in a model soil contaminated by three different concentrations of cadmium (40, 160, and 320 mg.kg?1) with different accompanied anions (Cl?, SO4 2?). In all variants, the most Cd (90 %) was accumulated in the roots, but higher content in the case of Cl?. The distribution of Cd in various cucumber organs was as follows: root > stem > leaf > fruits. However, in variants with higher doses of Cd with SO4 2?, the ratio was changed as follows: root > leaf > stem > fruits. In all variants, least of Cd (max. 1 %) was found in fruits. Variants with the highest Cd doses were significantly different by comparison with all other variants, but higher content was in the case of Cl? anion. Stimulation effect on the biomass production and growth of aerial parts and roots of plants in all variants with Cd was observed. Toxicity symptoms, mainly in the presence of leaf chlorosis and yellowing, were more visible in the variants with Cl?, in comparison with SO4 2?. The amounts of phenol compounds in leaves rose almost in all variants. Only the variants with higher Cd content with SO4 2? showed slight reduction. One possible explanation of reduced content may be their bounding on Cd. The content of salicylic acid was reduced in all variants with Cd treatment. However, it is difficult to conclude their role in plant defence responses to heavy metal, because their actual defence mechanism is still unclear. However, from these results, we can suggest that the accompanying anion and the form in which Cd exists may have an impact on the involvement of various antioxidant systems. 相似文献
6.
Jing-jing Meng Zhi-wei Qin Xiu-yan Zhou Ming Xin 《Plant Molecular Biology Reporter》2016,34(5):947-960
A propamocarb-responsive gene named CsABC19 was isolated from a cucumber cultivar ‘D0351’ using a homologous cloning strategy. The full-length cDNA of CsABC19 was 921 bp with a complete ORF encoding 306 amino acids. Quantitative real-time PCR analysis revealed that CsABC19 was induced in the root, stem, leaf, and fruit by propamocarb and the expression levels of CsABC19 seemed to be different in different tissues. Further functional analysis showed that CsABC19 transgenic Arabidopsis plants appeared better growth performance under propamocarb stress and lower propamocarb residues. Our findings suggest that CsABC19 plays a crucial role in plant responses to propamocarb stress and also provide new clues for the mechanism regulation of the responses to propamocarb stress in cucumber. 相似文献
7.
Yike Han Fengyue Zhao Shang Gao Xianyun Wang Aimin Wei Zhengwu Chen Nan Liu Xueqiang Tong Xinmeng Fu Changlong Wen Zhenxian Zhang Ningning Wang Shengli Du 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(2):449-460
Key message
The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber.Abstract
A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.8.
A simple and efficient protocol for high frequency plant regeneration of a grain legume grasspea (Lathyrus sativus L.) is described. Of different explant types tested epicotyl segments were most responsive. Murashige and Skoog’s (1962) medium augmented with 17.76 µM 6-benzyladenine + 10.74 µM α-naphthaleneacetic acid showed the highest percentage of direct shoot regeneration. Among cultivars IC-120487 showed the highest regeneration frequency (80 %) with maximum shoot numbers (8.2 shoots per explant) and maximum average shoot length (4.1 cm). About 78 % of the regenerated shoots were rooted in half-strength MS medium containing 2.85 µM indole-3-acetic acid. After primary hardening the plantlets were established in soil with a survival rate of 75 %. 相似文献
9.
Clethra barbinervis (Ericales), Cucumis sativus, and Lycopersicon esculentum were grown in soils collected from six different vegetation sites (cedar, cypress, larch, red pine, bamboo grass, and Italian ryegrass), and morphology and colonization preference of arbuscular mycorrhizal (AM) fungi were investigated by microscopic observation and PCR detection. C. barbinervis consistently formed Paris-type AM throughout the sites. C. sativus formed both Arum- and Paris-type AM with high occurrence of Arum-type AM. L. esculentum also formed both Arum- and Paris-type AM but with high occurrence of Paris-type AM. AM diversity within the same plant species was different among the sites. Detected AM diversity from AM spores in different site soils did not consistently reflect AM fungal diversity seen in test plants. Detected families were different, depending on test plants grown even in the same soil. AM fungi belonging to Glomaceae were consistently detected from roots of all test plants throughout the sites. Almost all the families were detected from roots of C. barbinervis and L. esculentum. On the other hand, only two or three families of AM fungi (Archaeosporaceae and/or Paraglomaceae and Glomaceae) but not two other families (Acaulosporaceae and Gigasporaceae) were detected from roots of C. sativus, indicating strong colonization preference of AM fungi to C. sativus among test plants. This study demonstrated that host plant species strongly influenced the colonization preference of AM fungi in the roots. 相似文献
10.
11.
Yong Zhou Lifang Hu Shuifeng Ye Lunwei Jiang Shiqiang Liu 《Plant Cell, Tissue and Organ Culture》2018,135(2):309-319
Superoxide dismutase (SOD) proteins, which are widely present in the plant kingdom, play vital roles in response to abiotic stress. However, the functions of cucumber SOD genes in response to environmental stresses remain poorly understood. In this study, a SOD gene CsCSD1 was identified and functionally characterized from cucumber (Cucumis sativus). The CsCSD1 protein was successfully expressed in E. coli, and its overexpression significantly improved the tolerance of host E. coli cells to salinity stress. Besides, overexpression of CsCSD1 enhanced salinity tolerance during germination and seedling development in transgenic Arabidopsis plants. Further analyses showed that the SOD and CAT (catalase) activities of transgenic plants were significantly higher than those of wild-type (WT) plants under normal growth conditions as well as under NaCl treatment. In addition, the expression of stress-response genes RD22, RD29B and LEA4-5 was significantly elevated in transgenic plants. Our results demonstrate that the CsCSD1 gene functions in defense against salinity stress and may be important for molecular breeding of salt-tolerant plants. 相似文献
12.
A DNA fragment encoding the hepatitis B virus surface antigen was amplified from a positive blood (hepatitis B) sample and
introduced into the pET 32c prokaryotic expression vector. The gene encoding the HBV surface protein antigen was introduced
into pCAMBIA 3300, and immobilized into Agrobacterium tumefaciens strain LBA4404. Cotyledonary leaf sections of Cucumis sativus (cucumber) cv ‘Swarnamukhi’ were cocultivated with Agrobacterium harboring the binary vector pCAMBIA 3300 carrying the HBV surface antigen gene driven by the CaMV35S promoter and the herbicide
resistance gene phosphinothricin. Putative transformed shoots were induced on a Murashige and Skoog (MS) medium containing
phosphinothricin, and these were then rooted on MS basal medium supplemented with 1 mg/L Indole 3-butyric acid (IBA). Integration
of the T-DNA into in putative transgenic plants was confirmed by PCR and Southern blot analyses. RT-PCR and Northern blot
analyses were conducted to determine RNA expression. Levels of expression in transgenic plants were confirmed by Western blot
analysis, and quantification of the protein was determined by enzyme linked immuno assay (ELISA). Molecular mass of the recombinant
protein was measured by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-TOF) Mass Spectrometry. 相似文献
13.
G. S. Minyuk E. S. Chelebieva I. N. Chubchikova N. V. Dantsyuk I. V. Drobetskaya E. G. Sakhon O. B. Chivkunova K. A. Chekanov E. S. Lobakova R. A. Sidorov A. E. Solovchenko 《Russian Journal of Plant Physiology》2016,63(4):566-574
We studied effects of рН and СО2 enrichment on the physiological condition and biochemical composition of a carotenogenic microalga Coelastrella (Scotiellopsis Vinatzer) rubescens Kaufnerová et Eliás (Scenedesmaceae, Sphaeropleales, Chlorophyceae), a promising source of natural astaxanthin. The microalga was grown at a constant pH (5, 6, 7 or 8) maintained by direct СО2 injection. The air-sparged culture served as the control. Cell division rate and size, dry biomass productivity, the rates of nitrogen and phosphorus uptake as well as photosynthetic pigment and total lipid content and fatty acid composition were followed. С. rubescens possessed a narrow-range рН tolerance (the optimum рН 6–7). Under these conditions, the highest values of the maximum (1.0–1.1 1/day) and average (0.3–0.35 1/day) specific growth rate, chlorophyll а (4.8–4.9%) and total carotenoid dry weight percentages (1.7–1.8%) were recorded. Cell lipid fatty acid unsaturation index (1.851) and polyunsaturated fatty acid percentage (36–39%) and С18:3 ω3/С18:1 ω9 ratio (3.8–4.5) were also the highest under these conditions. A decline of рН to 5 brought about severe stress manifesting itself as a cell division cessation, photosynthetic apparatus reduction, two-fold increase in cell volume, accumulation of dry weight and lipids and a considerable decline in fatty acid unsaturation. Cultivation of С. rubescens without СО2 enrichment resulted in a rapid alkalization of the medium to рН 9.5–10.5 impairing the physiological condition of the cells. Reasons of the deteriorative effects of suboptimal pH values on the physiological condition of C. rubescens are discussed. 相似文献
14.
15.
16.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
17.
18.
Silvia Donnini Bhakti Prinsi Alfredo S Negri Gianpiero Vigani Luca Espen Graziano Zocchi 《BMC plant biology》2010,10(1):268
Background
Iron deficiency induces in Strategy I plants physiological, biochemical and molecular modifications capable to increase iron uptake from the rhizosphere. This effort needs a reorganization of metabolic pathways to efficiently sustain activities linked to the acquisition of iron; in fact, carbohydrates and the energetic metabolism has been shown to be involved in these responses. The aim of this work was to find both a confirmation of the already expected change in the enzyme concentrations induced in cucumber root tissue in response to iron deficiency as well as to find new insights on the involvement of other pathways. 相似文献19.
Li-jun Zhu Xing-guang Deng Li-juan Zou Jun-qiang Wu Da-wei Zhang Hong-hui Lin 《Journal of Plant Biology》2016,59(2):143-151
Proanthocyanidins (PAs) are the end products of the flavonoid biosynthetic pathway in many seeds, but their biological function is rarely unknown during seed germination. In the present study, we observed that PAs pretreatment accelerated cucumber seeds germination with maximum efficiency at 0.15% by measuring germination percentage and radical length. Using inhibitors of abscisic acid (ABA), gibberellins (GA) and alternative oxidase (AOX) and H2O2 scavenger pretreatment and gene expression analysis, we found that the accelerated effect of 0.15% PAs on seed germination was due to the decreased ABA biogenesis and enhanced GA production. ROS are induced by PAs pretreatment. Then, the enhanced ROS contributed to GA and ethylene accumulation and ABA decrease in seeds. Moreover, the improvement of GA was involved in the further induction of antioxidant enzymes activities. Therefore, our findings uncover a novel role of PAs in seed germination and clarify the relationships between ROS, ABA, GA and ethylene during seed germination. 相似文献
20.
Shanshan Hou Huanhuan Niu Qianyi Tao Shenhao Wang Zhenhui Gong Sen Li Yiqun Weng Zheng Li 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(8):1693-1703