共查询到20条相似文献,搜索用时 15 毫秒
1.
The levels of six glycolytic intermediates and the activity of phosphofructokinase (PFK) were determined in Dwarf Cavendish banana at different stages of ripening between harvest and senescence. There was a 2.3-fold increase in the level of fructose- 1,6-diphosphate between the preclimacteric and climacteric peak stage. The PFK preparations from preclimacteric and climacteric peak stages were purified ca 15-fold using Blue-Sepharose affinity chromatography. The clectrophoretic studies with the enzyme preparations ofthese two stages ofripening indicated the presence of two forms of PFK at both stages of ripening. 相似文献
2.
The peel and pulp of the banana fruit and the pseudostem were examined for glutamate-oxaloacetate transaminase (GOT), glutamate-pyruvate transaminase (GPT) and aldolase activities and protein, phenolics, chlorophyll and starch. The peel-pulp ratio at various stages of fruit development on the plant and in detached fruits showing incipient ripening were used as an index of the physiological age of the fruit. The enzymes exhibited maximum activity at a stage corresponding to the initiation of the climacteric. GPT level at this stage was higher than that of GOT. An initial increase in the protein content was followed by a decline in both peel and pulp, the level reaching a minimum in climacteric fruits. Astringency, measured in terms of total phenolics, decreased with development; in mature fruits, peel contained 4–5 × as much phenolics as pulp. Chlorophyll in mature fruits was 10 × higher than in young fruits and decreased in ripe fruits. The onset of ripening was attended with a pronounced decrease in the starch. The various analyses were carried out also on the pseudostem removed from the plant soon after flower formation. 相似文献
3.
Pectate lyase activity during ripening of banana fruit 总被引:2,自引:0,他引:2
Pectate lyase (PEL) activity was demonstrated in ripe banana fruits on supplementing the homogenizing medium with cysteine and Triton X-100. The enzyme was characterized on the basis of alkaline pH optimum, elimination of the activity by EDTA and activation by Ca(2+). PEL activity was not detected in preclimacteric banana fruits. PEL activity increased progressively from early climacteric and reached maximum level at climacteric peak and declined in post climacteric and over ripened fruits. Replacing pectate with pectin in PEL assay manifested enzyme activity even in preclimacteric fruits. In contrast to PEL, polygalacturonase activity progressively increased during fruit ripening even in postclimacteric fruits. 相似文献
4.
A soluble form of invertase (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26) has been purified from ripe banana fruit (Musa cavendishii). The enzyme has a high specific activity and an apparent MW of 220 000 daltons; it appears to be glycoprotein containing 12.5% mannose and 12% glucosamine. 相似文献
5.
Calcium in plant senescence and fruit ripening 总被引:13,自引:1,他引:13
I. B. FERGUSON 《Plant, cell & environment》1984,7(6):477-489
Abstract. Calcium has long been associated with regulation of the ripening process of fruit and post-harvest storage life. Specifically, maintenance of relatively high calcium concentrations in fruit tissue results in a slower rate of ripening, as seen in lower respiration rates, reduced ethylene production, and slower softening of fruit flesh. There are also some specific fruit disorders such as bitter pit, which can be prevented if sufficient calcium is present. Senescence of other plant tissues such as leaves and flowers has also been shown to be retarded by the application of calcium.
Work leading to the above information is reviewed and discussed in the context of what is currently known of cellular regulation of calcium in plants. The major sites for the action of calcium in senescence and ripening are suggested to be in membrane structure and function, and in cell wall structure. Although high external concentrations of calcium are an advantage in reducing the rate of senescence or ripening, it is emphasized that normal cell function requires the maintenance of low concentrations of free calcium in the cell cytosol. It is suggested that one possible feature of senescence is a breakdown in such cellular regulation. 相似文献
Work leading to the above information is reviewed and discussed in the context of what is currently known of cellular regulation of calcium in plants. The major sites for the action of calcium in senescence and ripening are suggested to be in membrane structure and function, and in cell wall structure. Although high external concentrations of calcium are an advantage in reducing the rate of senescence or ripening, it is emphasized that normal cell function requires the maintenance of low concentrations of free calcium in the cell cytosol. It is suggested that one possible feature of senescence is a breakdown in such cellular regulation. 相似文献
6.
The increase in malic enzyme (l-malate: NADP+ oxidoreductase (oxalacetate-decarboxylating) EC 1.1.1.40) activity, usually observed during the r 相似文献
7.
The maximum respiration rate of tomato fruit during the climacteric period was markedly increased when the plants were grown under potassium-deficient conditions. Whereas potassium deficiency had no effect on cytoplasmic glutamate-oxoloacetate transaminase, there was a significant increase in the activity of this enzyme from mitochondria once the fruit began to change colour. Malate dehydrogenase was reduced in activity by potassium deficiency. It is suggested that the augmented mitochondrial transiminase levels, coupled with reduced malate dehydrogenase activity in low potassium fruit, result in reduced levels of oxaloacetic acid which is a potent inhibitor of Krebs cycle oxidations, thus leading to higher respiration rates for the intact fruit. 相似文献
8.
The activities of four mitochondrial enzymes were studied in four stages of ripening tomato fruit. The highest enzyme activity was recorded for malate dehydrogenase followed by cytochrome c oxidase. Succinate dehydrogenase and NADH oxidase levels were low and could only be determined in the green stage of the fruit. However, peaks of various enzyme activities coincided in identical mitochondrial fractions on the sucrose density gradient. Moreover, the levels of malate dehydrogenase and cytochrome c oxidase were constant during the ripening process while the other two enzymes, succinate dehydrogenase and NADH oxidase, declined. This might indicate that mitochondria retain some of their essential functions through the ripening process. 相似文献
9.
The carbon dioxide and ethylene concentrations in tomato fruit ( Lycopersicon esculentum cv. Castelmart) and their stage of ripeness (characteristic external color changes) were periodically measured in fruit attached to and detached from the plant. An external collection apparatus was attached to the surface of individual tomato fruit to permit non-destructive sampling of internal gases. The concentration of carbon dioxide and ethylene in the collection apparatus reached 95% of the concentration in the fruit after 8 h. Gas samples were collected every 24 h. A characteristic climacteric surge in carbon dioxide (2-fold) and ethylene (10-fold) concentration occurred coincident with ripening of detached tomato fruit. Fruit attached to the plant exhibited a climacteric rise in ethylene (20-fold) concentration during ripening, but only a linear increase in carbon dioxide concentration. The carbon dioxide concentration increases in attached fruit during ripening, but the increase is a continuation of the linear increase seen in both attached and detached fruit before ripening and does not exhibit the characteristic pattern normally associated with ripening climacteric fruit. In tomato fruit, it appears that a respiratory climacteric per se, which has been considered intrinsic to the ripening of certain fruit, may not be necessary for the ripening of "climacteric" fruit at all, but instead may be an artifact of using harvested fruit. 相似文献
10.
A role for jasmonates in climacteric fruit ripening 总被引:12,自引:0,他引:12
Jasmonates are a class of oxylipins that induce a wide variety of higher-plant responses. To determine if jasmonates play
a role in the regulation of climacteric fruit ripening, the effects of exogenous jasmonates on ethylene biosynthesis and color,
as well as the endogenous concentrations of jasmonates were determined during the onset of ripening of apple (Malus domestica Borkh. cv. Golden Delicious) and tomato (Lycopersicon esculentum Mill. cv. Cobra) fruit. Transient (12 h) treatment of pre-climacteric fruit discs with exogenous jasmonates at low concentration
(1 or 10 μM) promoted ethylene biosynthesis and color change in a concentration-dependent fashion. Activities of both 1-aminocyclopropane-1-carboxylic
acid (ACC) oxidase and ACC synthase were stimulated by jasmonate treatments in this concentration range. The endogenous concentration
of jasmonates increased transiently prior to the climacteric increase in ethylene biosynthesis during the onset of ripening
of both apple and tomato fruit. The onset of tomato fruit ripening was also preceded by an increase in the percentage of the
cis-isomer of jasmonic acid. Inhibition of ethylene action by diazocyclopentadiene negated the jasmonate-induced stimulation
of ethylene biosynthesis, indicating jasmonates act at least in part via ethylene action. These results suggest jasmonates
may play a role together with ethylene in regulating the early steps of climacteric fruit ripening.
Received: 14 August 1997 / Accepted: 4 October 1997 相似文献
11.
Two forms (A and B) of starch phosphorylase were found in the mature banana leaf by polyacrylamide gel electrophoresis and DEAE-cellulose chromatography. The young leaf contained only form A and the appearance of form B with leaf development was accompanied by a decrease in the content of form A. At a later stage of leaf maturity only form B could be found. The MWs of forms A and B were 450 000, and 220 000 respectively. 相似文献
12.
13.
Fruit-specific suppression of the ethylene receptor LeETR4 results in early-ripening tomato fruit 总被引:2,自引:0,他引:2
Tomato is an economically important crop and a significant dietary source of important phytochemicals, such as carotenoids and flavonoids. Although it has been known for many years that the plant hormone ethylene is essential for the ripening of climacteric fruits, its role in fruit growth and maturation is much less well understood. In this study, data are presented which indicate that fruit-specific suppression of the ethylene receptor LeETR4 causes early ripening, whereas fruit size, yield and flavour-related chemical composition are largely unchanged. Early fruit ripening is a highly desirable and valuable trait, and the approach demonstrated here should be applicable to any fruit species requiring ethylene to ripen. These results demonstrate that ethylene receptors probably act as biological clocks regulating the onset of tomato fruit ripening. 相似文献
14.
15.
Kenji Iki Kiyoshi Sekiguchi Kunio Kurata Tomio Tada Hiroki Nakagawa Nagao Ogura Hidetaro Takehana 《Phytochemistry》1978,17(2):311-312
The amount of tomato fruit β-fructofuranosidase extractable from the cell walls during ripening parallelled the changes in activity of the enzyme. Using the techniques of radioimmunoassay, double immunodiffusion analysis and immunotitration, no differences in immunological properties of β-fructofuranosidase between the various stages of fruit ripening were detected. 相似文献
16.
Wolfgang Schuch Colin R. Bird John Ray Christopher J. S. Smith Colin F. Watson Peter C. Morris Julie E. Gray Christine Arnold Graham B. Seymour Gregory A. Tucker Donald Grierson 《Plant molecular biology》1989,13(3):303-311
Ripening is a complex developmental process involving changes in the biochemistry, physiology and gene expression of the fruit. It is an active process characterised by changes in all cellular compartments. cDNA cloning has been used as an approach to analyse changes in gene expression during fruit ripening. This has revealed that several genes are switched on specifically during fruit ripening, including one encoding polygalacturonase (PG), a major cell wall protein. These cDNA clones have been used to study the expression of the genes in normal and ripening mutant fruits, and under environmental stress conditions.The PG gene has been isolated and it has been demonstrated that 1450 bases 5 of the coding region are sufficient for the tissue- and development-specific expression of a bacterial marker gene in transgenic tomatoes. Antisense RNA techniques have been developed to generate novel mutant tomatoes in which the biochemical function of this enzyme and its involvement in fruit softening has been tested. 相似文献
17.
The lipid composition of tomato fruit and its mitochondrial fraction were examined at various stages of fruit ripeness. Phosphatidyl choline, phosphatidyl ethanolamine, monogalactosyl diglyceride, digalactosyl diglyceride and phosphatidyl inositol were found to be the major lipids of tomato pericarp at all stages of ripeness. Mitochondrial lipids resembled those of the parent tissue except for the absence of monogalactosyl diglyceride and a greater percentage of diphosphatidyl glycerol and phosphatidic acid. Changes in the lipid-protein ratio of mitochondria were noted with ripening. 相似文献
18.
Fruit ripening is a complex physiological process involving significant external and internal modifications. Classic edible fleshy fruits have been classified as climacteric or non‐climacteric according to their dependence on the phyto hormone ethylene; however, data have increasingly confirmed the involvement of the free radical nitric oxide (NO) in this process. Moreover, the exogenous application of NO demonstrates its beneficial effects on fruit quality. 相似文献
19.
Anthocyanin accumulation is one measure of ripening in the strawberry (Fragaria ananassa Duch.), a non-climacteric fruit. Neither aminoethoxyvinylglycine, an inhibitor of 1-aminocyclopropane carboxylic acid synthase, nor inhibitors of ethylene action (silver, norbornadiene) affected anthocyanin accumulation in ripening fruit. When the achenes were removed from one half of an unripe fruit there was an accelerated accumulation of anthocyanin and induction of phenylalanine ammonia lyase on the de-achened portion of the ripening fruit. These effects of achene removal could be prevented by the application of the synthetic auxins 1-naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid to the de-achened surface. The introduction of 1-naphthalene acetic acid into intact unripe strawberry fruit through the peduncle delayed their subsequent ripening, as measured by the accumulation of anthocyanin, loss of chlorophyll and decrease in firmness. These findings suggest that the decline in the concentration of auxin in the achenes as strawberry fruit mature modulates the rate of fruit ripening.Abbreviations ACC
1-aminocyclopropane-1-carboxylic acid
- AVG
aminoethoxyvinylglycine
- NAA
1-naphthaleneacetic acid
- PA1
phenylalanine ammonia-lyase
- POA
phenoxyacetic acid
- 2,4-D
2,4-dichlorophenoxyacetic acid 相似文献
20.
Andrea Masia Maurizo Ventura Hiroshi Gemma Silviero Sansavini 《Plant Growth Regulation》1998,24(2):127-134
The activity of IAA oxidase (IAAox), peroxidases (POD), and polyphenoloxidases (PPO), as affected by different pre-harvest growth regulator treatments (ABA, AVG, NAA, PDJ), was determined in on-tree ripening apples (cv. Golden Delicious) before and during the ethylene climacteric. The production of ethylene was inhibited by AVG and delayed by NAA, whereas ABA and PDJ treatments caused, in the on-tree remaining fruits, a marked fruit drop and a decrease or a slight increase in ethylene levels respectively. While all treatments reduced POD activity, jasmonate increased IAAox and PPO activity. The inhibitory effect of NAA on all enzyme activity seems related to interference with C2H2 action or to a reduced sensitivity of the fruit abscission zone tissues to the hormone. The observed high fruit drop induced by ABA treatment made it impossible to detect differences in enzyme activity. AVG-treated fruits showed no substantial effects on IAAox and PPO activity in comparison to the control, a finding that seems to be related to a delay in all senescence processes caused by the very low level of the inhibited ethylene production. In control fruits IAAox activity increased during the initial ripening stages and decreased thereafter, POD activity increased throughout ripening and PPO showed little variation. 相似文献