首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterizing the diversity and structure of host–parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyze the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across 5 well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host–parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon–Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analyzing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.  相似文献   

2.
Biogeographic patterns of parasite diversity are useful for determining how host–parasite interactions can influence speciation. However, variation in methodologies and sampling effort can skew diversity estimates. Avian haemosporidians are vector-transmitted blood parasites represented by over 1300 unique genetic lineages spread across over 40 countries. We used a global database of lineage distributions for two avian haemosporidian genera, Plasmodium and Haemoproteus, to test for congruence of diversity among haemosporidians and their avian hosts across 13 geographic regions. We demonstrated that avian haemosporidians exhibit similar diversity patterns to their avian hosts; however, specific patterns differ between genera. Haemoproteus spp. diversity estimates were significantly higher than those of Plasmodium spp. in all areas where the genera co-occurred, apart from the Plasmodium spp.-rich region of South America. The geographic distributions of parasite genera also differed, with Haemoproteus spp. absent from the majority of oceanic regions while Plasmodium spp. were cosmopolitan. These findings suggest fundamental differences in the way avian haemosporidians diverge and colonise new communities. Nevertheless, a review of the literature suggests that accurate estimates of avian haemosporidian diversity patterns are limited by (i) a concentration of sampling towards passerines from Europe and North America, (ii) a frequent failure to include microscopic techniques together with molecular screening and (iii) a paucity of studies investigating distributions across vector hosts.  相似文献   

3.
Bird populations often have high prevalences of the haemosporidians Haemoproteus spp. and Plasmodium spp., but the extent of host sharing and host switching among these parasite lineages and their avian hosts is not well known. While sampling within a small geographic region in which host individuals are likely to have been exposed to the same potential parasite lineages, we surveyed highly variable mitochondrial DNA from haemosporidians isolated from 14 host taxa representing 4 avian families (Hirundinidae, Parulidae, Emberizidae, and Fringillidae). Analyses of cytochrome b sequences from 83 independent infections identified 29 unique haplotypes, representing 2 well-differentiated Haemoproteus spp. lineages and 6 differentiated Plasmodium spp. lineages. A phylogenetic reconstruction of relationships among these lineages provided evidence against host specificity at the species and family levels, as all haemosporidian lineages recovered from 2 or more host individuals (2 Haemoproteus and 3 Plasmodium lineages) were found in at least 2 host families. We detected a similar high level of host sharing; the 3 most intensively sampled host species each harbored 4 highly differentiated haemosporidian lineages. These results indicate that some Haemoproteus spp. and Plasmodium spp. lineages exhibit a low degree of host specificity, a phenomenon with implications for ecological and evolutionary interactions among these parasites and their hosts.  相似文献   

4.
Recent research has revealed well over 1000 mtDNA lineages of avian haemosporidian parasites, but the extent to which this diversity is caused by host–parasite coevolutionary history or environmental heterogeneity is unclear. We surveyed haemosporidian and host mtDNA in a geographically structured, ecological generalist species, the house wren Troglodytes aedon, across the complex landscape of the Peruvian Andes. We detected deep genetic structure within the house wren across its range, represented by seven clades that were between 3.4–5.7% divergent. From muscle and liver tissue of 140 sampled house wrens we found 23 divergent evolutionary lineages of haemosporidian mtDNA, of which ten were novel and apparently specific to the house wren based on searches of haemosporidian databases. Combined and genus‐specific haemosporidian abundance differed significantly across environments and elevation, with Leucocytozoon parasites strongly associated with montane habitats. We observed spatial stratification of haemosporidians along the west slope of the Andes where five lineages were restricted to non‐overlapping elevational bands. Individual haemosporidian lineages varied widely with respect to host specificity, prevalence, and geographic distribution, with the most host‐generalist lineages also being the most prevalent and widely distributed. Despite the deep divergences within the house wren, we found no evidence for host‐specific co‐diversification with haemosporidians. Instead, host‐specific haemosporidian lineages in the genus Haemoproteus were polyphyletic with respect to the New World parasite fauna and appeared to have diversified by periodic host‐switches involving distantly related avian species within the same region. These host‐specific lineages appeared to have diversified contemporaneously with Andean house wrens. Taken together, these findings suggest a model of diffuse co‐diversification in which host and parasite clades have diversified over the same time period and in the same geographic area, but with parasites having limited or ephemeral host specificity.  相似文献   

5.
Host responses to parasitism in the wild are often studied in the context of single host–parasite systems, which provide little insight into the ecological dynamics of host–parasite interactions within a community. Here we characterized immune system responses to mostly low-intensity, chronic infection by haemosporidian parasites in a sample of 424 individuals of 22 avian host species from the same local assemblage in the Missouri Ozarks. Two types of white blood cells (heterophils and lymphocytes) were elevated in infected individuals across species, as was the acute-phase protein haptoglobin, which is associated with inflammatory immune responses. Linear discriminant analysis indicated that individuals infected by haemosporidians occupied a subset of the overall white blood cell multivariate space that was also occupied by uninfected individuals, suggesting that these latter individuals might have harbored other pathogens or that parasites more readily infect individuals with a specific white blood cell profile. DNA sequence-defined lineages of haemosporidian parasites were sparsely distributed across the assemblage of hosts. In one well-sampled host species, the red-eyed vireo (Vireo olivaceus), heterophils were significantly elevated in individuals infected with one but not another of two common parasite lineages. Another well-sampled host, the yellow-breasted chat (Icteria virens), exhibited no differences in immune response to different haemosporidian lineages. Our results indicate that while immune responses to infection may be generalized across host species, parasite-specific immune responses may also occur.  相似文献   

6.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

7.
Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance–decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host–parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.  相似文献   

8.
Identifying the mechanisms driving the distribution and diversity of parasitic organisms and characterizing the structure of parasite assemblages are critical to understanding host–parasite evolution, community dynamics, and disease transmission risk. Haemosporidian parasites of the genera Plasmodium and Haemoproteus are a diverse and cosmopolitan group of bird pathogens. Despite their global distribution, the ecological and historical factors shaping the diversity and distribution of these protozoan parasites across avian communities and geographic regions remain unclear. Here we used a region of the mitochondrial cytochrome b gene to characterize the diversity, biogeographical patterns, and phylogenetic relationships of Plasmodium and Haemoproteus infecting Amazonian birds. Specifically, we asked whether, and how, host community similarity and geography (latitude and area of endemism) structure parasite assemblages across 15 avian communities in the Amazon Basin. We identified 265 lineages of haemosporidians recovered from 2661 sampled birds from 330 species. Infection prevalence varied widely among host species, avian communities, areas of endemism, and latitude. Composition analysis demonstrated that both malarial parasites and host communities differed across areas of endemism and as a function of latitude. Thus, areas with similar avian community composition were similar in their parasite communities. Our analyses, within a regional biogeographic context, imply that host switching is the main event promoting diversification in malarial parasites. Although dispersal of haemosporidian parasites was constrained across six areas of endemism, these pathogens are not dispersal‐limited among communities within the same area of endemism. Our findings indicate that the distribution of malarial parasites in Amazonian birds is largely dependent on local ecological conditions and host evolutionary relationships.  相似文献   

9.
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.  相似文献   

10.
Parasites can vary in the number of host species they infect, a trait known as “host specificity”. Here we quantify phylogenetic signal—the tendency for closely related species to resemble each other more than distantly related species—in host specificity of avian haemosporidian parasites (genera Plasmodium, Haemoproteus and Leucocytozoon) using data from MalAvi, the global avian haemosporidian database. We used the genetic data (479 base pairs of cytochrome b) that define parasite lineages to produce genus level phylogenies. Combining host specificity data with those phylogenies revealed significant levels of phylogenetic signal while controlling for sampling effects; phylogenetic signal was higher when the phylogenetic diversity of hosts was taken into account. We then tested for correlations in the host specificity of pairs of sister lineages. Correlations were generally close to zero for all three parasite genera. These results suggest that while the host specificity of parasite sister lineages differ, larger clades may be relatively specialised or generalised.  相似文献   

11.
Previous studies about geographic patterns of species diversity of avian malaria parasites and others in the Order Haemosporida did not include the avian biodiversity hotspot Madagascar. Since there are few data available on avian malaria parasites on Madagascar, we conducted the first known large-scale molecular-based study to investigate their biodiversity. Samples (1067) from 55 bird species were examined by a PCR method amplifying nearly the whole haemosporidian cytochrome b gene (1063?bp). The parasite lineages found were further characterized phylogenetically and the degree of specialization was determined with a newly introduced host diversity index (Hd). Our results demonstrate that Madagascar indeed represents a biodiversity hotspot for avian malaria parasites as we detected 71 genetically distinct parasite lineages of the genera Plasmodium and Haemoproteus. Furthermore, by using a phylogenetic approach and including the sequence divergence we suspect that the detected haemosporidian lineages represent at least 29 groups i.e. proposed species. The here presented Hd values for each parasite regarding host species, genus and family strongly support previous works demonstrating the elastic host ranges of some avian parsites of the Order Haemosporida. Representatives of the avian parasite genera Plasmodium and Leucocytozoon tend to more often be generalists than those of the genus Haemoproteus. However, as demonstrated in various examples, there is a large overlap and single parasite lineages frequently deviate from this rule.  相似文献   

12.
Host shifts are widespread among avian haemosporidians, although the success of transmission depends upon parasite‐host and parasite‐vector compatibility. Insular avifaunas are typically characterized by a low prevalence and diversity of haemosporidians, although the underlying ecological and evolutionary processes remain unclear. We investigated the parasite transmission network in an insular system formed by Eleonora's falcons (the avian host), louse flies that parasitize the falcons (the potential vector), and haemosporidians (the parasites). We found a great diversity of parasites in louse flies (16 Haemoproteus and 6 Plasmodium lineages) that did not match with lineages previously found infecting adult falcons (only one shared lineage). Because Eleonora's falcon feeds on migratory passerines hunted over the ocean, we sampled falcon kills in search of the origin of parasites found in louse flies. Surprisingly, louse flies shared 10 of the 18 different parasite lineages infecting falcon kills. Phylogenetic analyses revealed that all lineages found in louse flies (including five new lineages) corresponded to Haemoproteus and Plasmodium parasites infecting Passeriformes. We found molecular evidence of louse flies feeding on passerines hunted by falcons. The lack of infection in nestlings and the mismatch between the lineages isolated in adult falcons and louse flies suggest that despite louse flies’ contact with a diverse array of parasites, no successful transmission to Eleonora's falcon occurs. This could be due to the falcons’ resistance to infection, the inability of parasites to develop in these phylogenetically distant species, or the inability of haemosporidian lineages to complete their development in louse flies.  相似文献   

13.
Understanding how pathogens and parasites diversify through time and space is fundamental to predicting emerging infectious diseases. Here, we use biogeographic, coevolutionary and phylogenetic analyses to describe the origin, diversity, and distribution of avian malaria parasites in the most diverse avifauna on Earth. We first performed phylogenetic analyses using the mitochondrial cytochrome b (cyt b) gene to determine relationships among parasite lineages. Then, we estimated divergence times and reconstructed ancestral areas to uncover how landscape evolution has shaped the diversification of Parahaemoproteus and Plasmodium in Amazonia. Finally, we assessed the coevolutionary patterns of diversification in this host–parasite system to determine how coevolution may have influenced the contemporary diversity of avian malaria parasites and their distribution among Amazonian birds. Biogeographic analysis of 324 haemosporidian parasite lineages recovered from 4178 individual birds provided strong evidence that these parasites readily disperse across major Amazonian rivers and this has occurred with increasing frequency over the last five million years. We also recovered many duplication events within areas of endemism in Amazonia. Cophylogenetic analyses of these blood parasites and their avian hosts support a diversification history dominated by host switching. The ability of avian malaria parasites to disperse geographically and shift among avian hosts has played a major role in their radiation and has shaped the current distribution and diversity of these parasites across Amazonia.  相似文献   

14.
Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species.  相似文献   

15.
Human induced changes on landscape can alter the biotic and abiotic factors that influence the transmission of vector-borne parasites. To examine how infection rates of vector-transmitted parasites respond to changes on natural landscapes, we captured 330 Blue-black Grassquits (Volatinia jacarina) in Brazilian biomes and assessed the prevalence and diversity of avian haemosporidian parasites (Plasmodium and Haemoproteus) across avian host populations inhabiting environment under different disturbance and climatic conditions. Overall prevalence in Blue-black Grassquits was low (11%) and infection rates exhibited considerable spatial variation, ranging from zero to 39%. Based on genetic divergence of cytochrome b gene, we found two lineages of Haemoproteus (Parahaemoproteus) and 10 of Plasmodium. We showed that Blue-black Grassquit populations inhabiting sites with higher proportion of native vegetation cover were more infected across Brazil. Other landscape metrics (number of water bodies and distance to urban areas) and climatic condition (temperature and precipitation) known to influence vector activity and promote avian malaria transmission did not explain infection probability in Blue-black Grassquit populations. Moreover, breeding season did not explain prevalence across avian host populations. Our findings suggest that avian haemosporidian prevalence and diversity in Blue-black Grassquit populations are determined by recent anthropogenic changes in vegetation cover that may alter microclimate, thus influencing vector activity and parasite transmission.  相似文献   

16.
Land use changes including deforestation, road construction and agricultural encroachments have been linked to the increased prevalence of several infectious diseases. In order to better understand how deforestation affects the prevalence of vector-borne infectious diseases in wildlife, nine paired sites were sampled (disturbed vs. undisturbed habitats) in Southern Cameroon. We studied the diversity, prevalence and distribution of avian malaria parasites ( Plasmodium spp.) and other related haemosporidians (species of Haemoproteus and Leucocytozoon ) from these sites in two widespread species of African rainforest birds, the yellow-whiskered greenbul ( Andropadus latirostris , Pycnonotidae) and the olive sunbird ( Cyanomitra olivacea , Nectariniidae). Twenty-six mitochondrial cytochrome b lineages were identified: 20 Plasmodium lineages and 6 Haemoproteus lineages. These lineages showed no geographic specificity, nor significant differences in lineage diversity between habitat types. However, we found that the prevalence of Leucocytozoon and Haemoproteus infections were significantly higher in undisturbed than in deforested habitats ( Leucocytozoon spp. 50.3% vs. 35.8%, Haemoproteus spp. 16.3% vs. 10.8%). We also found higher prevalence for all haemosporidian parasites in C. olivacea than in A. latirostris species (70.2% vs. 58.2%). Interestingly, we found one morphospecies of Plasmodium in C. olivacea , as represented by a clade of related lineages, showed increased prevalence at disturbed sites, while another showed a decrease, testifying to different patterns of transmission, even among closely related lineages of avian malaria, in relation to deforestation. Our work demonstrates that anthropogenic habitat change can affect host–parasite systems and result in opposing trends in prevalence of haemosporidian parasites in wild bird populations.  相似文献   

17.
Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.  相似文献   

18.
We used PCR to screen for the presence of haemosporidian parasites (Phylum: Apicomplexa; Order: Haemosporida) in avian blood samples, and sequenced the parasite mitochondrial cytochrome b gene from infected hosts, to study patterns in the prevalence of haemosporidians in 1,166 individuals of 50 species in four habitats along an elevation gradient in the Sierra de Bahoruco, Dominican Republic, island of Hispaniola. We found an overall prevalence of 0.44 among species with ≥10 individuals sampled per year, but this varied considerably among species. We found no difference in infection rates between years, between males and females, between second‐year (<1 y old) and older birds, or among members of different foraging guilds. Prevalence differed significantly among migratory, endemic resident, and non‐endemic resident species, with endemics having the highest rates of infection. Prevalence also varied among habitats, decreasing with increasing elevation, but the pattern was confounded by variation in the host species present at each elevation. From 215 sequenced parasites from 17 species of avian hosts, we recovered multiple examples of 12 lineages of Haemoproteus (Parahaemoproteus), two lineages of a Columbiformes‐specific clade of H. (Haemoproteus), and 10 lineages of Plasmodium, with an additional seven lineages sampled only once. A single parasite lineage was responsible for 34.4% of all infections, but five more lineages made up 41.8% of all infections. Several lineages were broadly distributed across multiple host species, but six lineages, all H. (Haemoproteus) or H. (Parahaemoproteus), were recorded from at least five individuals of a single host, suggesting host specialization. The number of host species from which each parasite lineage was recovered varied from one to nine; several host species harbored as many as 5–9 parasite lineages. Longitudinal data suggest that while hosts might harbor the same parasite lineage for more than a year, some hosts appear to clear infections from their circulating blood, while others manifested infections by a different parasite lineage.  相似文献   

19.
Haemosporida is a large group of vector-borne intracellular parasites that infect amphibians, reptiles, birds, and mammals. This group includes the different malaria parasites (Plasmodium spp.) that infect humans around the world. Our knowledge on the full life cycle of these parasites is most complete for those parasites that infect humans and, to some extent, birds. However, our current knowledge on haemosporidian life cycles is characterized by a paucity of information concerning the vector species responsible for their transmission among vertebrates. Moreover, our taxonomic and systematic knowledge of haemosporidians is far from complete, in particular because of insufficient sampling in wild vertebrates and in tropical regions. Detailed experimental studies to identify avian haemosporidian vectors are uncommon, with only a few published during the last 25 years. As such, little knowledge has accumulated on haemosporidian life cycles during the last three decades, hindering progress in ecology, evolution, and systematic studies of these avian parasites. Nonetheless, recently developed molecular tools have facilitated advances in haemosporidian research. DNA can now be extracted from vectors' blood meals and the vertebrate host identified; if the blood meal is infected by haemosporidians, the parasite's genetic lineage can also be identified. While this molecular tool should help to identify putative vector species, detailed experimental studies on vector competence are still needed. Furthermore, molecular tools have helped to refine our knowledge on Haemosporida taxonomy and systematics. Herein we review studies conducted on Diptera vectors transmitting avian haemosporidians from the late 1800s to the present. We also review work on Haemosporida taxonomy and systematics since the first application of molecular techniques and provide recommendations and suggest future research directions. Because human encroachment on natural environments brings human populations into contact with novel parasite sources, we stress that the best way to avoid emergent and reemergent diseases is through a program encompassing ecological restoration, environmental education, and enhanced understanding of the value of ecosystem services.  相似文献   

20.
Haemosporidian parasites of birds are ubiquitous in terrestrial ecosystems, but their coevolutionary dynamics remain poorly understood. If species turnover in parasites occurs at a finer scale than turnover in hosts, widespread hosts would encounter diverse parasites, potentially diversifying as a result. Previous studies have shown that some wide-ranging hosts encounter varied haemosporidian communities throughout their range, and vice-versa. More surveys are needed to elucidate mechanisms that underpin spatial patterns of diversity in this complex multi-host multi-parasite system. We sought to understand how and why a community of avian haemosporidian parasites varies in abundance and composition across elevational transects in eight sky islands in southwestern North America. We tested whether bird community composition, environment, or geographic distance explain haemosporidian parasite species turnover in a widespread host that harbors a diverse haemosporidian community, the Audubon’s Warbler (Setophaga auduboni). We tested predictors of infection using generalized linear models, and predictors of bird and parasite community dissimilarity using generalized dissimilarity modeling. Predictors of infection differed by parasite genus: Parahaemoproteus was predicted by elevation and climate, Leucocytozoon varied idiosyncratically among mountains, and Plasmodium was unpredictable, but rare. Parasite turnover was nearly three-fold higher than bird turnover and was predicted by elevation, climate, and bird community composition, but not geographic distance. Haemosporidian communities vary strikingly at fine spatial scales (hundreds of kilometers), across which the bird community varies only subtly. The finer scale of turnover among parasites implies that their ranges may be smaller than those of their hosts. Avian host species should encounter different parasite species in different parts of their ranges, resulting in spatially varying selection on host immune systems. The fact that parasite turnover was predicted by bird turnover, even when considering environmental characteristics, implies that host species or their phylogenetic history plays a role in determining which parasite species will be present in a community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号