首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal and molecular structure of methyl 2,3,4,6,2′,4′,6′-hepta-O-acetyl β-laminarabioside has been determined by X-ray diffraction. The crystal belongs to the orthorhombic system space group P212121,a 10.471 (1), b 22.482(1), c 13.647(1) Å, Dm 1.33 g.cm?3, Z 4. The structure was established by the direct method and refined by the block-diagonal, least-squares procedure to R 0.093 for 2043 observed reflections. Difference synthesis showed all the hydrogen atoms except the methyl hydrogen ones. The molecule shows a fully-extended conformation and has no intra-molecular hydrogen bond. The ring-to-ring conformation can be described.as (φψ)  (42.5, 4.7°), according to the definition of Sathyanarayana and Rao, and it is compared with (φψ)  (27.9, ?37.5°) of laminarabiose. There is no inter-molecular hydrogen bond. The d-glucopyranose rings of the molecule are piled up along the a axis and approximately parallel to the bc-plane. Each of the acetyl groups is approximately perpendicular to the d-glucopyranose ring.  相似文献   

2.
The single crystal X-ray structures of (CuICH3CN4·dibenzo-18-crown-6 (I) and (CuICH3CN) (II) have been determined at room temperature [(I) C28H36Cu4I4N4o6, monoclinic space group P21/n, a = 10.116(4), b = 18.092(8), c = 22.211(9) Å, β = 98.66(3)°, Z = 4; (II) C2H3CuIN, orthorhombic pBN21, a = 13.618(8), b =8.742(2), c = 4.298(2), Z = 4]. (I) exists as a distorted cube with copper and iodine at alternate corners, the fourth coordination site copper occupied by an acetonitrile molecule coordinated through nitrogen. The cluster contains no crystallographic symmetry element and CuCu distances average 2.770(5) Å. The dibenzo-18-crown-6 displays only second sphere type interactions with cluster. (II) displays a pleated double chain type structure with distorted rectangles of alternating Cu and I atoms sharing opposite edges in infinite array. Copper displays tetrahedral geometry by coordination to three iodine atoms and a nitrogen bound acetonitrile molecule.  相似文献   

3.
The reaction of [Cu2(O2CCH3)4·2H2O] with trimethoprim is reported. In methanol a green solution was obtained, which, on adding benzene, yielded tetrakis(μ-acetato)bis(trimethoprim)dicopper(II) di-benzene methanol solvate. The compound crystallizes with four molecules per cell in the monoclinic space group C2/c, with a = 24.109(5), b = 15.256(3), c = 16.532(3) Å, β = 116.89(2) for λ(Mo-Kα) = 0.71073 Å. The copper atoms are bridged by four acetate groups to form the binuclear molecule [Cu2-(O2CCH3)4(TMP)2]·2C6H6·CH3OH. The TMP ligand acts as a donor molecule through one pyrimidinic nitrogen atom.  相似文献   

4.
The preparation and molecular and crystal structure of the complex [(ethylenediamine)bis(7,9,-dimethylhypoxanthine)platinum(II)] hexafluorophosphate, [Pt(C2H8N2)(C7H8N4O)2] (PF6)2, are reported. The complex crystallizes in the monoclinic system, space group C2/c, with a = 12.334(2)Å, b = 10.256(2)Å, c = 22.339(3)Å, β = 101.31(1)°, V = 2771.0Å3, Z = 4, Dmeasd = 2.087(3) g cm?3, Dcalc = 2.094 g cm?3. Intensities for 3992 symmetry-averaged reflections were collected in the θ-2o scan mode on an automated diffractometer employing graphite-monochromatized MoKα radiation. The structure was solved by standard heavy-atom Patterson and Fourier methods. Full matrix least-squares refinement led to a final R value of 0.051. Both the ethylenediamine chelate and the PF6? anion are disordered. The primary coordination sphere about the Pt(II) center is approximately square planar with the bidentate ethylenediamine ligand and the N(1) atoms [Pt(II) ? N(1) = 2.020(5)Å] of two 7,9-dimethylhypoxanthine bases (related by a crystallographic twofold axis of symmetry) occupying the four coordination sites. The exocyclic O(6) carbonyl oxygen atoms of the two 7,9-dimethylhypoxanthine ligands participate in intracomplex hydrogen bonding with the amino groups of the ethylenediamine chelate [N(ethylenediamine) ? O(6) = 2.89( )Å]. The observed Pt ? O(6) intramolecular distances of 3.074(6)Å are similar to those found in other Pt(II) N(1)-bound 6-oxopurine complexes and in several Pt(II) N(3)-bound cytosine systems.  相似文献   

5.
The compound VOCl2·2(3-Etpy)·H2O (Etpy = ethylpyridine) was prepared by slow hydrolysis of the toluene suspension obtained from the reaction of VCl4 with 3-ethylpyridine The crystal was found to be monoclinic C2/c, Z = 4, ϱ(calc.) = 1.426 × 103 kg m−3, a = 13.281(5), b = 13.989(7), c = 9.277(8) Å, V = 1723(2) Å3 β = 90.53(5)°.Final full matrix least-square refinement with anisotropic thermal parameters for all non-hydrogen atoms gave R = 0.039, Rw = 0.042, Rg = 0.053. The vanadium atom is hexacoordinate with the pyridine ligands in mutually trans positions in the plane containing the Cl atoms. The O vanadyl atom is in an axial position trans to the coordinated H2O molecule, and the OVO line is a binary axis for the molecule.  相似文献   

6.
The crystal structure of methyl 2,6-dichloro-2,6-dideoxy-3,4-O-isopropylidene-α-D-altropyranoside (1) has been determined by X-ray diffraction. The compound crystallizes in the orthorhombic system, space group P212121, with unit-cell dimensions a  7.932, b  8.133, and c  20.447 Å. The structure was solved by the heavy-atom method and refined by the least-squares technique to an R value of 0.047 by using 736 intensities measured on a diffractometer. The pyranoside ring is close to a skew-boat conformation, with C-2 and C-5 being maximally displaced from the least-squares plane through the remaining four atoms. The H-1H-2 dihedral angle of  158° is in agreement with the J1,2 value of 4.5 Hz. Thus the solid-state conformation appears to correspond with the conformation in solution. The dioxolane ring is in a twist form, with O-4 and, C-8 puckered on opposite sides of the plane of the other ring atoms. The pyranose-ring substituents are in equatorial and pseudoequatorial orientations. The hydrogen atoms at C-3 and C-4 are in a cis arrangement. The orientations of both the methoxyl group and the chloromethyl group with respect to the ring are gauche—trans. The exocyclic anomeric C-1O-1 bond-distance (1.39 Å) is the shortest CO bond in the structure. The intracyclic CO bonds are significantly different, C-1O-5 being less than C-5O-5.  相似文献   

7.
《Inorganica chimica acta》1988,147(2):265-274
Trifunctional dialkyl [1,2-bis(diethylcarbamoyl)- ethyl] phosphonates, (RO)2P(O)CH[C(O)N(C2H5)2]- [CH2C(O)N(C2H5)2] R  CH3, C2H5, i-C3H7, n-C6H13 were prepared from the respective sodium salts, Na[(RO)2P(O)CHC(O)N(C2H5)2] and N,N- diethylchloroacetamide, and they were characterized by elemental analysis, mass, infrared and NMR spectroscopy. The molecular structure of (i-C3H7O)2- P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2] was determined by single crystal X-ray diffraction analysis and found to crystallize in the monoclinic space group P21/c with a=15.589(6), b=9.783(4), c= 16.283(7) Å, β = 110.90(3)°, Z = 4 and V= 2320(2) Å3. The structure was solved by direct methods and blocked least-squares refinement converged with Rf = 5.7% and RwF= 4.4% on 2266 unique data with F>4σ(F). Important bond distances include PO 1.459(3) Å, CHCO 1.228(3) Å and CHCH2CO 1.223(3) Å. The coordination chemistry of the ligand with several lanthanides was examined, and the structure of the complex Gd(NO3)3{[(i-C3H7O)2P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2]}2·H2O was determined. The complex crystallized in the monoclinic space group P21/n with a = 13.524(5), b = 22.033(4), c = 19.604(4) Å β = 106.22(2)°, Z = 4 and V= 5609(3) Å3. The structure was solved by heavy atom techniques and blocked least-squares refinement converged with RF = 5.9% and RwF = 4.1% on 5275 reflections with F > 4σ(F). Both trifunctional ligands were found to bond to Gd(III) through only the phosphoryl oxygen atoms. The remainder of the Gd coordination sphere was composed of three bidentate nitrate oxygen atoms and an oxygen bonded water molecule. Several important bond distances include GdO(phosphoryl)av = 2.343(5) Å, GdO(nitrate)av = 2.475(7) Å, GdO(water) = 2.354(5) Å, PO(phosphoryl)av = 1.467(6) Å, CHCOav = 1.242(10) Å and CHCH2COav = 1.209(11) Å.  相似文献   

8.
The crystal structure of α-D-Manp-(1→3)-β-D-Manp-(1→4)-α-D-GlcNAcp has been determined by the direct method using the multi-solution, tangent formula, and “magic integer” procedures. The space group is P22, and 2 molecules are in the unit cell with a  9.894 (5), b  10.372 (6), c  11.816 (6) Å, and β  95.03° (6). The structure was refined to R 0.059 for 2099 reflections measured with Mo Kα radiation. Difference synthesis showed all the hydrogen atoms, and indicated a partial (~30%) substitution of the α-anomer molecules by the β-anomer molecules. The D-mannopyranose and the D-glucopyranose have the normal 4C1 conformation; an intramolecular hydrogen-bond O-3″-H.....O-5′ (2.703 Å) stabilises the GlcNAc in relation to β-D-mannopyranose.  相似文献   

9.
The title compounds were made by reacting bis(diphenylphosphino)methane (dppm) with reduced solutions of OsCl64? and Ru2OCl104?. The crystal and molecular structures of these compounds have been determined form three-dimensional X-ray study. The cis-isomers crystallize with one CHCl3 per molecule of the complex. All three compounds crystallize in the monoclinic space group P21/n with unit cell dimensions as follows: Cis-OsCl2(dppm)2·CHCl3: a = 13.415(4) Å, b = 22.859(4) Å, c = 16.693(3) Å, β = 105.77(3)°, V = 4926(3) Å3, Z = 4. cis-RuCl2(dppm)2·CHCl3: a = 13.442(3) Å, b = 22.833(7) Å, c = 16.750(4) Å, β = 105.53(2)°, V = 4953(3) Å3, Z = 4. trans-RuCl2(dppm)2: a = 11.368(7) Å, b = 10.656(6) Å, c = 18.832(12) Å; β = 103.90(6)°, V = 2213(7) Å3; Z = 2. The structures were refined to R = 0.044 (Rw = 0.055) for cis-OsCl2(dppm)2·CHCl3; R = 0.065 (Rw = 0.079) for cis-RuCl2(dppm)2·CHCl3 and R = 0.028 (Rw = 0.038) for trans-RuCl2(dppm)2. The complexes are six coordinate with stable four-membered chelate rings. The PMP angle in the chelate rings is ca. 71° in each case.  相似文献   

10.
Di-μ-azido-bis[azido(2-aminopyridine)aquo]dicopper(II), [Cu(2-ampy)(N3)2(H2O)]2, was synthesized and characterized by X-ray crystallography. The crystals are triclinic, space group P1, with a = 7.142(1), b = 7.812(1), c = 9.727(1) Å, a = 96.52(1), β = 95.52(1), γ = 113.47(1)°, and Z = 1. The structure was refined to RF = 0.030 for 1960 observed MoKα diffractometer data. The dimeric molecule, which possesses a crystallographic inversion center, contains both terminal and μ(1)-bridging azido groups. Each copper(II) atom is further coordinated by a 2-aminopyridine ligand (via its ring N atom) and a water molecule to give a distorted square pyramid, with the metal atom raised by 0.17 Å above the N4 basal plane [CuN (ring) = 2.001(2), CuN (azide) = 1.962(3)–2.018(2) Å] towards the apical aquo ligand [CuO = 2.371(2) Å]. Each water molecule forms an intramolecular O?HN (amine) acceptor hydrogen bond, and is linked by two OH?N (terminal azide) intermolecular donor hydrogen bonds to adjacent dimeric complexes to yield a layer structure parallel to (001). Infrared and electronic spectral data are presented and discussed.  相似文献   

11.
The structure of oxymyoglobin has been refined at 1·6 Å resolution, using diffractometer data collected at ?12 °C. The crystallographic R factor is 0·159, and the atomic positions are known to 0·1 Å accuracy in internal segments of the molecule.The iron atom lies 0·22(3) Å from the plane of the porphyrin, 0·25 Å closer than in deoxymyoglobin, and the F helix has moved by a similar amount. Oxygen binds to the iron in a bent, end-on arrangement, with FeOO = 115(5) ° and FeO = 1·83(6) Å. The mean FeN(porphyrin) bond length is 1·95(6) Å, 0·08 Å shorter than in deoxymyoglobin, but the difference is not significant compared to the experimental error. FeNε(His8F) is 2·07(6) Å, the same as in model compounds. Movements of the haem, iron, F helix and FG corner on oxygenation are similar to those found in the T-R state transition in haemoglobin, but are smaller in magnitude.  相似文献   

12.
The crystal structure of potassium hydroxide complexed amylose, obtained by heterogeneous deacetylation of amylose triacetate, has been determined through a combined stereochemical structure-refinement and X-ray diffraction-analysis. The structure crystallizes in an orthorhombic unit-cell with parameters a  8.84, b  12.31, and c (fiber repeat)  22.41 Å, and with P212121 symmetry. The conformation of the amylose chain is a distorted, left-handed helix with 6 d-glucose residues per turn. Each three-residue asymmetric unit is complexed with one molecule of potassium hydroxide and three molecules of water. The K+ ion coordinates with four oxygen atoms of the amylose chain and with two other oxygen atoms, and this coordination is probably the cause for the more-extended amylose chain-conformation than would be predicted from a φ, ψ map. The distortions in the chain are primarily manifested by different O-6 rotations and by slightly different bridge and φ, ψ angles for the individual residues. The structure is extensively hydrogen bonded, although largely through water molecules, which accounts for its ready water solubility. The left-handed conformation of the chain in this structure is consistent with the conformations of amylose triacetate and V-amylose, both of which are left-handed.  相似文献   

13.
The crystal and molecular structure of a tri-O-ethylamylose polymorph, TEA 3, has been solved by stereochemical conformation and packing analysis, combined with X-ray fibre diffraction analysis. The unit cell is orthorhombic, space group P212121, with a  15.36 (±0.03) Å, b  12.18 (±0.05) Å, and c (fibre repeat)  15.48 (±0.01) Å. The actual chain conformation is a 43 helix with the EtO-6 group in the tg position, as was found in the polymorph TEA 1.  相似文献   

14.
《Inorganica chimica acta》1987,133(2):347-352
When crystals of [Dy(OH2)7(OHMe)] [DyCl(OH2)2(18- crown-6)]2Cl7·2H2O [1] are allowed to warm from 5 °C to ambient temperature (22 °C) under the original solvent mixture (1:3 CH3OH: CH3CN), they redissolve and the title complex can be isolated by slow evaporation of the resulting solution. The crystal structure of this complex, [Dy(OH2)8]Cl3·18-crown-6·4H2O, has been determined. It crystallizes in the monoclinic space group, P21/c, with a = 10.395(1), b = 18.684(1), c = 16.259- (3) Å, β= 102.56(1)°, and Dcalc = 1.61 g cm−3 for Z = 4. A final conventional R value of 0.041 was obtained by least-squares refinement using 3453 independent observed [Fo⩾5σ(Fo)] reflections. The [Dy(OH2)8]3+ cations and crown ether molecules are hydrogen bonded in a polymeric chain with the crown molecules separating the cations and a total of seven DyOH2···O(crown ether) hydrogen bonds. The chains are connected by a hydrogen bonding network consisting of the cations, chloride ions, and uncoordinated water molecules. The geometry of the cation is best described as a bicapped trigonal prism with distortions on the reaction pathway toward dodecahedral symmetry. The two capping atoms average 2.41(1) Å from Dy, the remaining DyO distances average 2.38(2) Å. The 18-crown-6 molecule has the D3d conformation normally observed except for a distortion of one OCCO unit containing the oxygen atom accepting two hydrogen bonds.  相似文献   

15.
Iron(III) complexes of three aroyl hydrazones, pyridoxal isonicotinoyl hydrazone (H2pih), pyridoxal benzoyl hydrazone (H2pbh), and salicylaldehyde benzoyl hydrazone (H2sbh), were synthesized and characterized. In aqueous medium at pH 7, [Fe(pih)(Hpih)]·3H2O is formed. In acidic methanol, a 1:1 ligand-to-metal complex is formed, [FeCl2(H2pih)]Cl (1), whereas in aqueous medium at low pH cis-[FeCl2(H2pih)(H2O)]Cl·H2O (2) is formed. Compounds 1 and 2 are high-spin d5 with μeff = 5.88 μB and 5.93 μB (298 K). The crystal structures of 1 and 2 show that H2pih acts as a tridentate neutral ligand in which the phenolic and hydrazidic protons have shifted to the pyridine nitrogen atoms. The co- ordination polyhedron of 1 is ‘square’ pyramidal, whereas that of 2 is pseudo-octahedral. Compound 1 is triclinic, space group Pl, with a = 12.704(2) Å, b = 8.655(2) Å, c = 8.820(2) Å, α = 105.42(1)°, β = 89.87(1)°, γ = 107.60(1)°, V = 888 Å3, and Z = 2; 2 is monoclinic, space group P21/c, with a = 15.358(4) Å, b = 7.304(3) Å, c = 17.442(4) Å, β = 101.00(2)°, V = 1921 Å3, and Z = 4.  相似文献   

16.
2-Deoxy-β-d-arabino-hexopyranose, C6H12O5, is orthorhombic, P212121, with cell dimensions at ?150° [20°], a = 6.484(2) [6.510(3)], b = 10.364(2) [10.427(4)], c = 11.134(3) [11.153(5)] Å, V = 748.2 [757.1] Å3, Z = 4, Dx = 1.457 [1.440], and Dm = [1.455] g.cm?3. The intensities of 1269 reflections were measured by using MoKα radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the 4C1(d) conformation, with puckering parameters Q = 0.563 Å, θ = 3.9°, and ? = 350.3°. The departure from ideality is very small, and less than that in β-d-glucopyranose, Q = 0.584 Å and θ = 6.9°. The β-glycosidic, CO bond is short, 1.383(4) Å, and the OCOH torsion angle is ?87°, consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.  相似文献   

17.
Bis-Methyl N,N-diethylcarbamylmethylenephosphonato dysprosium thiocyanate, Dy[O2P(OCH3)CH2C(O)N(C2H5)2]2(NCS) was prepared from the combination of ethanolic solutions of Dy(NCS)3·xH2O and (CH3O)2P(O)CH2C(O)N(C2H5)2. The complex was characterized by infrared and NMR spectroscopy, and single crystal X-ray diffraction methods. The crystal structure was determined at 25 °C from 3727 independent reflections by using a standard automated diffractometer. The complex was found to crystallize in the monoclinic space group P21/c with a = 13.282(4) Å, b = 19.168(5) Å, c = 9.648(2) Å, β = 90.09(2)°, Z = 4, V = 2456.4 Å3 and ?cald = 1.72 g cm?3. The structure was solved by standard heavy atom techniques, and blocked least-squares refinement converged with Rf = 4.7% and RwF = 4.9%. The Dy atom is seven coordinate and bonded in a bidentate fashion to two anionic phosphonate ligands [O2P(OCH3)CH2C(O)N(C2H5)2?] through the carbonyl oxygen atoms and one of two phosphonate oxygen atoms. In addition, each Dy atom is coordinated to two phosphonate oxygen atoms from two neighboring complexes and to the nitrogen atom of a thiocyanate ion. This coordination scheme gives rise to a two-dimensional polymeric structure. Some important bond distances include DyNCS 2.433(8) Å, DyO(carbonyl)avg 2.39(2) Å, DyO(equat. phosphoryl)avg 2.303(8) Å, DyO(axial phosphoryl)avg 2.25(2), PO(phosphoryl)avg 1.493(3) Å and CO(carbonyl)avg 1.25(1) Å.  相似文献   

18.
Three-dimensional X-ray diffraction data were used to determine the crystal structure of α,α-trehalose-calcium bromide monohydrate, a model system for investigation of factors involved in the binding of calcium ions to d-glucans of dental plaques. Crystals of C12H22O11 ·CaBr2·H2O are orthorhombic, space group C2221, with a  11.058(1) b  11.537(1), c  15.101(1) Å, and Z  4. Intensity data for 925 independent reflections were measured with an automated diffractometer. A trial structure, obtained by the heavy-atom method, was refined by least-squares to R  0.03. An outstanding feature of the crystal packing is the interaction of trehalose molecules with calcium ions. Each calcium is coordinated to hydroxyl groups from four symmetry-related d-glucose moieties, thereby cross-linking the trehalose molecules. Similar interactions between calcium ions and the d-glucose residues of extracellular d-glucans may be of importance in the agglutination processes involved in dental-plaque formation.  相似文献   

19.
By reacting neodymium nitrate hexahydrate with the cryptand 〈222〉 in methanol, the complex Nd2-(NO3)6[C18H36O6N2]·H2O was obtained and analyzed by single-crystal X-ray diffraction. The cell is triclinic P1 with a = 14.870(2) Å, b = 13.261(2) Å, c = 8.832(1) Å, α = 91.2(1)°, β = 93.4(1)°, γ = 87.6(1)°, Z = 2 and U = 1736.6 Å3. The structure was refined by least-squares methods to the conventional R = 0.039 for 6177 observed reflections. The compound contains the cations [Nd〈222〉(NO3)]2+ and the anions [Nd(NO3)5·H2O]2?, and is isostructural with the samarium analogue. Solid state fluorescence spectra of the title complex were measured at room and liquid nitrogen temperature, and the transitions 4F3/24I9/2 and 4F3/24I11/2 analyzed.  相似文献   

20.
Nickel(II) complexes with the compartmental Schiff bases derived from 2,6-diformyl-4-chlorophenol and 1,5-diamino-3-thiapentane (H2L1) or 3,3′-diamino-N-methyl-dipropylamine (H2L2) were synthesized, and the crystal structures of [Ni(L1)- (py)2] and [Ni(L2)(dmf)]·H20 were determined by X-ray crystallography.Ni(L1)(py)2 is monoclinic, space group C2/c, with a= 18.457(6), b = 11.116(7), c= 16.098(6) Å, and β = 115.79(5)°; Dc = 1.49 g cm−3 for Z = 4. The structure was refined to the final R of 6.9%. The molecule has C2 symmetry. The nickel atom is six-coordinated octahedral. Selected bond lengths are: NiO 2.04(1) Å, NiN (L1) 2.08(1) Å, NiN(py) 2.17(1) Å.[Ni(L2)(dmf)]·H2O is monoclinic, space group P21/n, with a = 17.329(6), b = 13.322(7), c = 12.476(7) Å and β = 95.43(5)°; Dc = 1.45 g cm−3 for Z = 4. The structure was refined to the final R of 5.1%. The nickel atom is bonded in the octahedral geometry to the bianionic pentadentate ligand L2 and to one molecule of dimethylformamide. Selected bond lengths are: NiO (charged) 2.063(3) Å (mean value), NiO (neutral) 2.120(3) Å, NiN (planar) 2.050(3) Å (mean value), NiN (tetrahedral) 2.177(3) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号