首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hilmer Sørensen 《Phytochemistry》1976,15(10):1527-1529
2(S),2′(S)-N6-(2′-Glutaryl)lysine (l-saccharopine) and 2(S)-2-aminoadipic acid have been isolated from Reseda odorata. When traditional isolation procedures are used l-pyrosaccharopine (5(S),5′(S)-N-(5′-amino-5′-carboxy-pentyl)-2-pyrrolidone-5-carboxylic acid) is formed from l-saccharopine by lactamisation. The degree of lactamisation during various isolation steps has been studied, The amino acids were identified by IR and PMR spectroscopy and the configurations established by enzymic and polarimetric analyses. The contents of saccharopine and 2-amino-adipic acid have been determined relative to the total nitrogen content at various stages in the growth cycle of R. odorata.  相似文献   

2.
Investigation of polyphenol production in cut-injured sweet potato (Ipomoea batatas Lam. cv. Kokei 14) roots by histochemical and quantitative methods showed that polyphenols were produced in striking amounts in the proximal side of the tissue pieces (2 cm thick), but only in small amounts in cells of the distal side. In response to cut injury, formation of the enzymes related to polyphenol biosynthesis, phenylalanine ammonia-lyase and trans-cinnamic acid 4-hydroxylase, was also pronounced in the proximal side of the tissue pieces and slight in the distal side. The similar polarity was observed in the development of activities of various enzymes, such as NADPH-cytochrome c oxidoreductase, acid invertase, peroxidase, o-diphenol oxidase, and cytochrome c-O2 oxidoreductase. Acropetal development of polyphenol contents and of various enzyme activities may be related to the acropetal movement of indoleacetic acid (IAA) in roots of various plants. Treatment of the distal surface of tissue pieces with IAA or 2,4-dichlorophenoxyacetic acid caused polyphenol production but treatment with gibberellic acid, abscisic acid, kinetin, or ethylene had little effect. The results suggest that IAA may play a role in the metabolic response to cut injury.  相似文献   

3.
δ-Aminolevulinic acid was accumulated by greening cucumber (Cucumis sativus L. var. Alpha green) cotyledons, barley (Hordeum sativum var. Numar) leaves, and bean (Phaseolus vulgaris L. var. Red Kidney) leaves in the presence of various 14C-labeled precursors and levulinic acid, a competitive inhibitor of δ-aminolevulinic acid dehydrase. The radioactivity in the accumulated δ-aminolevulinic acid was measured.  相似文献   

4.
2(S),3′(S)-N-(3-Amino-3-carboxypropyl)azetidine-2-carboxylic acid and 2(S),3′(S),3″(S)-N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid have been isolated from seeds of Fagus silvatica L. (beechnuts). The structures have been established by PMR- and 13C-NMR-spectroscopy and by synthesis from l-azetidine-2-carboxylic acid. The second of the new amino acids is identical with nicotianamine. previously isolated from Nicotiana tabacum but assigned a different formula. The ring opening reactions of azetidine-2-carboxylic acid in neutral solution have been studied and the chemical and possibly biochemical precursor role of this amino acid for various amino acids including the two new ones described here, nicotianine [N-(3-amino-3-carboxypropyl)nicotinic acid] and methionine is discussed.  相似文献   

5.
Hydroxycinnamoyltransferases (HCTs) catalyze the transfer of the cinnamoyl moiety from hydroxycinnamoyl-CoA to various acceptors such as shikimic acid, quinic acid, hydroxylated acid, and glycerol. Four rice HCT homologues (OsHCT1–4) to tobacco HST were cloned, and OsHCT4 was expressed in Escherichia coli as a glutathione S-transferase fusion protein. Using the purified recombinant protein and biotransformation techniques, whether OsHCT4 shows hydroxycinnamoyltransferase activity with a variety of acyl group acceptors was investigated. The results of high performance liquid chromatography (HPLC) and mass spectrometry (MS) established that OsHCT4 mediated the trans-esterification of glycerol as well as shikimic acid in the presence of hydroxycinnamoyl-CoA. The structure of the reaction product was determined using nuclear magnetic resonance spectroscopy (NMR). E. coli cells co-expressing 4CL (4-coumarate:coenzyme A ligase) and OsHCT4 converted p-coumaric acid, ferulic acid, and caffeic acid into the corresponding glycerides. While this conversion is very efficient in vitro, the physiological significant in rice is currently unknown.  相似文献   

6.
The acyl exchange of phospholipids with lipases was investigated. The lipase from Rhizopus delemar catalyzed the acyl exchange reaction between various phospholipids and fatty acids. When we incubated 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) and oleic acid with lipase from R. delemar, the yield of diacyl phosphatidyl choline (PC) was 25% and the fatty acid composition of the converted PC was an oleic acid content of 25% and a palmitic acid content of 75%. This reaction exhibited 1-positional specificity. Three industrial lipases from Rhizopus sp., Mucor javanicus, and Candida cylindracea had the activity of the acyl exchange of phosphatidyl choline. The lipase from R. sp. gave the best result.  相似文献   

7.
《Plant science》1986,44(1):1-5
Two acid phosphatases have been found in crude extracts of seeds, coleoptiles and leaves of various grass species by means of crossed immunoelectrophoresis.The enzymes, cross-reacting with antibodies raised against proteins of Poa pratensis seeds differ in their binding to con A. The use of affinity chromatography on con A-Sepharose has separated the acid phosphatases into two fractions: the non-binding (acid phosphatase A) and the con A-binding (acid phosphatase B). The con A-binding acid phosphatase B from all tissues was further purified by gel filtration on Biogel P-100 and hydrophobic interaction chromatography on phenyl-Sepharose. Two isoenzymes: acid phosphatase B1 and B2 were obtained. The isoenzymes are glycoproteins containing D-mannose or D-glucose in their carbohydrate moiety. They retained the enzyme activity after binding in macromolecular complex with antibodies or con A. The purified acid phosphatases from all tissues cross-react with monospecific antibodies raised against P. pratensis seeds acid phosphatase B1 indicating the antigenic relationship between the enzymes of various grass species.  相似文献   

8.
Polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6, n-3), eicosapentaenoic acid (EPA, 20:5, n-3), and arachidonic acid (ARA, 20:4 n-6), have multiple beneficial effects on human health and can be used as an important ingredient in dietary supplements, food, feed and pharmaceuticals. A variety of microorganisms has been used for commercial production of these fatty acids. The microorganisms in the Pythium family, particularly Pythium irregulare, are potential EPA producers. The aim of this work is to provide a safety assessment of P. irregulare so that the EPA derived from this species can be potentially used in various commercial applications. The genus Pythium has been widely recognized as a plant pathogen by infecting roots and colonizing the vascular tissues of various plants such as soybeans, corn and various vegetables. However, the majority of the Pythium species (including P. irregulare) have not been reported to infect mammals including humans. The only species among the Pythium family that infects mammals is P. insidiosum. There also have been no reports showing P. irregulare to contain mycotoxins or cause potentially allergenic responses in humans. Based on the safety assessment, we conclude that P. irregulare can be considered a safe source of biomass and EPA-containing oil for use as ingredients in dietary supplements, food, feed and pharmaceuticals.  相似文献   

9.
The specificity of various acid proteinases from mold and yeast such as Aspergillus niger, Aspergillus saitoi, Rhizopus chinensis, Mucor miehei, Rhodotorula glutinis, and Cladosporium sp. were comparatively determined using with
(X = various amino acid residues) as substrates. Pepsin was used in a comparative study. Since the peptides were susceptible to these enzymes at the peptide bonds indicated by the arrows, except for the ones from both Aspergillus species and Rhodotorula, we could examine their specificity with respect to the amino acid residue on both sides of the splitting point. The results indicated that the microbial enzymes were specific for aromatic, or bulky and hydrophobic amino acid residues on both sides, as had been observed with pepsin. The specificity of the enzymes from Aspergillus and Rhodotorula was not determined because of lack of hydrolysis of the peptides.  相似文献   

10.
The production of trans-cinnamic acid from various alkylbenzenes by soil microorganisms was studied intensively by use of a co-oxidation technique. The microorganisms were grown on n-paraffins, and they did not use aromatic compounds as a carbon source when the preferred substrate was present in the medium. The effects of cell population, co-oxidation time, and type and mode of addition of the alkylbenzenes on the yield of trans-cinnamic acid were investigated. Yields (5 g/liter) of a product consisting of trans-cinnamic acid (88 to 100%) and 5-phenylvaleric acid (0 to 12%) were obtained when the proper conditions were chosen. Of a variety of microorganisms studied, a soil isolate closely related to Cellulomonas galba was found to be best for the production of trans-cinnamic acid.  相似文献   

11.
《Fungal biology》2021,125(11):869-878
The analysis of the overall fatty acid pattern as well as their distribution in various lipid classes of phytopathogenic fungi Puccinia malvacearum and P. glechomatis are considered as chemotaxonomic biomarkers. Puccinia malvacearum on Alcea rosea and P. glechomatis on Glechoma hederacea collected from plants grown in various localities were analysed to determine their fatty acid composition. Both species synthesised significant amounts of saturated palmitic and stearic acids as well as 9,10-epoxy-octadecanoic acid, which rarely occurs in the nature. Both species synthesised hydroxy FAs including 9,10-dihydroxy octadecanoic acid and long-chain 2-hydroxy fatty acids.2-hydroxy 18:0 and 3-hydroxy 20:0 fatty acids were present only in P. malvacearum spores, and these may be the chemotaxonomic markers of the species. Ultra-high performance liquid chromatography mass spectrometry was performed for a comparative lipidomic analysis of P. malvacearum and P. glechomatis. The results revealed the complexity of molecular lipid species of these fungi. P. malvacearum and P. glechomatis lipids were characterised by the presence of a high number of triglyceride (TG) species. 9,10-epoxy octadecanoic fatty acid was found in TGs. Among the many types of oxidised TGs identified in P. glechomatis lipids, the most abundant species corresponds to TG(22:5+6O_17:0_18:2). P. malvacearum and P. glechomatis produced various ceramide species with different FAs from 14 to 24 chain-length. Unusual lipids like (O-acyl)-ω-hydroxy FA 18:0/18:0 in P. glechomatis and (O-acyl)-ω-hydroxy FA 18:0/20:0 and 18:0/22:0 in P. malvacearum were detected. The analysis of the polar lipid composition showed the presence of phosphatidylcholine and phosphatidylethanolamine as the main phospholipid classes of Puccinia spp. with the highest diversity of molecular species. Other phospholipids phosphatidic acid, phosphatidylglycerol phosphatidylserine and phosphatidylinositol were present in smaller amounts.The diversity of the neutral and polar lipid composition and fatty acid profile of P. malvacearum and P. glechomatis can be used in chemotaxonomic studies.  相似文献   

12.
Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.  相似文献   

13.
Characteristic associations of free amino acids occur in the seeds of various groups of species within the Caesalpinieae. Guilandina species are distinctive in accumulating 4-ethylideneglutamic acid in their seeds, Gymnocladus and Gleditzia species in accumulating isomers of 3-hydroxy-4-methylglutamic acid, Bussea species in accumulating azetidine-2-carboxylic acid, Peltophorum species in accumulating a previously undescribed imino acid tentatively identified as a derivative of 4-hydroxypipecolic acid.  相似文献   

14.
In the present study, four Lactobacillus strains from the cheese were analyzed for its probiotic potential against enteropathogenic bacteria. The probiotic properties of the selected strains were also analyzed and the selected bacterial strains showed high tolerance in bile salts and organic acid. The strain L. plantarum LP049 showed maximum survival rate (92 ± 4.2% and 93.3 ± 2%) after 3 h of treatment at 0.25% (w/v) bile salts and 0.25% (w/v) organic acid concentrations. The ability of the Lactobacillus strains to adhere to human epithelial cells (HT-29 cell lines) was evaluated and L. plantarum LP049 showed maximum adhesion property (19.2 ± 1.1%) than other tested strains. The Lactobacillus strains produced lactic acid at various concentrations. Compared with other strains, maximum level of lactic acid (3.1 g/L), hydrogen peroxide (4.31 mM) and bacteriocin (31 AU/mg) was detected in LB049. The inhibitory activity of culture supernatant against various bacterial pathogens was observed. The zone of inhibition ranged between 6 ± 2 mm and 23 ± 2 mm. The cell free extract showed activity against, Escherichia coli (ATCC 10536), Salmonella enteritidis (ATCC 13076), Shigella flexneri (ATCC 29903), and Enterococcus faecium (ATCC 8459). Consequently, L. plantarum LP049 may be considered as a potential candidate for the production of novel bioactive metabolites for therapeutic and bio-protective applications.  相似文献   

15.
The distribution of radioactivity in the three- and four-carbon saccharinic acids, lactic acid and 2,4-dihydroxybutyric acid, obtained from d-xylose-1-14C, d-glucose-1-14C, and d-glucose-6-14C, was measured. The relative importance of the various mechanisms for forming 2,4-dihydroxybutyric acid was determined. Recombination of two-carbon fragments was found to be an important mechanism at the high alkalinity and temperature employed.  相似文献   

16.
Lactic Acid Production in a Mixed-Culture Biofilm Reactor   总被引:2,自引:0,他引:2       下载免费PDF全文
Novel solid supports, consisting of polypropylene blended with various agricultural materials (pp composite), were evaluated as supports for pure- and mixed-culture continuous lactic acid fermentations in biofilm reactors. Streptomyces viridosporus T7A (ATCC 39115) was used to form a biofilm, and Lactobacillus casei subsp. rhamnosus (ATCC 11443) was used for lactic acid production. For mixed-culture fermentations, a 15-day continuous fermentation of S. viridosporus was performed initially to establish the biofilm. The culture medium was then inoculated with L. casei subsp. rhamnosus. For pure-culture fermentation, L. casei subsp. rhamnosus was inoculated directly into the reactors containing sterile pp composite chips. The biofilm reactors containing various pp composite chips were compared with a biofilm reactor containing pure polypropylene chips and with a reactor containing a suspension culture. Continuous fermentation was started, and each flow rate (0.06 to 1.92 ml/min) was held constant for 24 h; steady state was achieved after 10 h. Lactic acid production was determined throughout the 24-h period by high-performance liquid chromatography. Production rates that were two to five times faster than those of the suspension culture (control) were observed for the pure- and mixed-culture bioreactors. Both lactic acid production rates and lactic acid concentrations in the culture medium were consistently higher in mixed-culture than in pure-culture fermentations. Biofilm formation on the chips was detected at harvest by chip clumping and Gram staining.  相似文献   

17.

Background

Effect of chlorocholine chloride (CCC) on phenolic acids composition and polyphenols accumulation in various anatomical parts (stems, leaves and inflorescences) of common buckwheat (Fagopyrum esculentum Moench) in the early stages of vegetation period were surveyed.

Results

Treatment of buckwheat seeds with 2% of CCC has been increased content of total phenolics in the stems, leaves and inflorescences. On analyzing the different parts of buckwheat plants, 9 different phenolic acids – vanilic acid, ferulic acid, trans-ferulic acid, chlorogenic acid, salycilic acid, cinamic acid, p-coumaric acid, p-anisic acid, methoxycinamic acid and catechins were identified. The levels of identified phenolic acids varied not only significantly among the plant organs but also between early stages of vegetation period. Same changes as in contents of chlorogenic acid, ferulic acid, trans-ferulic acid were found for content of salycilic acid. The content of these phenolic acids has been significant increased under effect of 2% CCC treatment at the phase I (formation of buds) in the stems and at the phase II (beginning of flowering) in the leaves and then inflorescences respectively. The content of catechins as potential buckwheat antioxidants has been increased at the early stages of vegetation period after treatment with 2% CCC.

Conclusions

The obtained results suggest that influence of CCC on the phenolics composition can be a result of various mechanisms of CCC uptake, transforming and/or its translocation in the buckwheat seedlings.  相似文献   

18.
The extracellular mucilage from Beijerinckia mobilis, a member of the Azotobacteriaceae, after removal of contaminating protein, was separated into a neutral polysaccharide (N-2, 10%); a neutral, dialysable fraction (N-1, 5%), consisting of glucose and oligosaccharides containing glucose, arabinose, and rhamnose; and an acidic polysaccharide (85%). N-2 (mol. wt, 1900) was highly branched and comprised glucopyranose, mannopyranose, and arabinofuranose residues (1:1:1). The various linkages were determined. The acid fraction was a polymer of high molecular weight composed of L-guluronic acid (65%), D-glucose (15%), and D-glycero-D-mannoheptose (20%), together with acetic and pyruvic acids. From the results of methylation, periodate oxidation, and partial hydrolysis, a branched molecule with a backbone of guluronic acid and heptose, and side chains of glucose and guluronic acid is proposed. Pyruvic acid was found to be acetal-linked to 2?5% of the heptose residues. The similarities between this polysaccharide and that from the related species Azotobacter indicum are discussed.  相似文献   

19.
Formation of linolenic acid in vivo from various precursors [1-14C]-2:0, -12:0, -16: 0, -18:0, -18:1, 18:2 in the cold resistant wheat cultivar Miranovskaja 808 and cold sensitive wheat cultivar Penjamo 62 was investigated at three different temperatures (+25, +5, and ?6 °C). Both cultivars converted the offered precursors to linolenic acid only very slowly. Decreasing the experimental temperature brought about an increase formation of linolenic acid, however, Miranovskaja 808 being more successful than Penjamo 62. Comparison of the specific activities of linolenic acid at the “time of equal level of tissue labeling” revealed that Miranovskaja 808 formed 2 to 10 times faster linolenic acid from various precursors upon exposure to cold than Penjamo 62. Considering the low rate of formation of linolenic acid in leaves it appears probable that even the cold resistant cultivars are unable to increase the proportion of linolenic acid in their membranes fast enough to prevent the thermotropic phase transition from liquid crystalline to solid gel state at beginning of the onset of cold. It is suggested that rapid accumulation of hitherto unknown cryoprotective substance (s) of lipidic nature precedes the accumulation of linolenic acid upon exposure of the seedlings to chilling temperatures.  相似文献   

20.
Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号