首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of 2,3,6-trideoxy-1,4-di-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexopyranose (1) with benzyl 2,3-dideoxy-d-glycero-pentopyranoside and p-toluenesulfonic acid gave a mixture of benzyl 2,3,6-trideoxy-4-O-p-nitrobenzoyl-3- (trifluoroacetamido)-l-lyxo-hexopyranoside (49%) and benzyl 2,3-dideoxy-4-O-[2,3,6-trideoxy-4-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-α-l-lyxo-hexopyranosyl]-d-glycero-pentopyranoside (4, 20 %). The structure of the disaccharide 4 was confirmed by a detailed, mass-spectrometric analysis in three modes, namely, negative- and positive-ion, chemical ionization, and electron impact. Similar treatment of the bis(p-nitrobenzoate) 1 with ethyl 2,3-dideoxy-d-glycero-pentopyranoside gave the ethyl glycoside and the desired disaccharide, showing that the transglycosylation is not restricted to benzyl glycosides. Removal of the p-nitrobenzoyl and the benzyl groups from 4 gave the disaccharide 2,3-dideoxy-4-O-(2,3,6-trideoxy-3-trifluoroacetamido-α-l-lyxo-hexopyranosyl)-d-glycero-pentopyranose.  相似文献   

2.
Methyl 4,6-O-benzylidene-2-deoxy-α-d-erythro-hexopyranosid-3-ulose reacted with potassium cyanide under equilibrating conditions to give, initially, methyl 4,6-O-benzylidene-3-C-cyano-2-deoxy-α-d-ribo-hexopyranoside (7), which, because it reverted slowly to the thermodynamically stable d-arabino isomer, could be crystallised directly from the reaction mixture. The mesylate derived from the kinetic product 7 could be converted by published procedures into methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-d-arabino-hexopyranoside, which was transformed into methyl N-acetyl-α-d-vancosaminide on inversion of the configuration at C-4. A related approach employing methyl 2,6-dideoxy-4-O-methoxymethyl-α-l-erythro-hexopyranosid-3-ulose gave the kinetic cyanohydrin and thence, via the spiro-aziridine 27, methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-l-arabino-hexopyranoside, a known precursor of methyl N-acetyl-α-l-vancosaminide.  相似文献   

3.
The azide displacement reaction on methyl 6-deoxy-4-O-methanesulphonyl-2,3-di-O-methyl-α-l-talopyranoside (6) in N,N-dimethylformamide yielded methyl 4,6-dideoxy-2,3-di-O-methyl-α-l-threo-hex-3-enopyranoside (7, ca. 50%), methyl 4,6-dideoxy-2,3-di-O-methyl-β-d-erythro-hex-4-enopyranoside (8, ca. 10%), and methyl 4-azido-4,6-dideoxy-2,3-di-O-methyl-α-l-mannopyranoside (9, ca. 40%). The corresponding azide 14 (20%) and the unsaturated sugars 12 (68%) and 13 (12%) were obtained from a comparable reaction on benzyl 6-deoxy-4-O-methanesulphonyl-2,3-di-O-methyl-α-l-talopyranoside (11).  相似文献   

4.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

5.
The unambiguous syntheses of methyl 3,4,6-tri-O-methyl-α-d-mannopyranoside (6) and methyl 3,4-di-O-methyl-α-d-mannopyranoside (10) were performed by routes involving methyl 3-O-benzoyl-4,6-O-benzylidene-α-d-mannopyranoside (1) to form methyl 2-O-p-tolylsulfonyl-d-mannopyranoside (4). Compound 4 directly led to 6, and, via a 6-trityl derivative, to 10.  相似文献   

6.
Methyl 2-O-benzoyl-3-bromo-3,6-dideoxy-α-l-altropyranoside (4) and methyl 2-O-benzoy]-3-bromo-3,6-dideoxy-4-O-methyl-α-l-altropyranoside (5) have been prepared from methyl-α-l-rhamnopyranoside, respectively, in 2 and 3 steps. Reduction of 4 with lithium aluminium hydride followed by acid hydrolysis afforded the 3,6-dideoxy-l-arabino-bexose (l-ascarylose). The anhydro sugars 8 and 9 have been used as intermediates in the stereoselective synthesis of 6-deoxy-3-O-methyl-l-altropyranose (l-vallarose) and of 3-amino-3-degxy-l-altro sugars. Under azidolysis conditions, and according to the temperature, 5 gave unsaturated sugars such as 20 and the derived 26, or azido compounds such as 21 and 24, and the derived sugar methyl 2-amino-2,3,6-trideoxy-α-l-threo-hexopyranosid-4-ulose (25).  相似文献   

7.
The synthesis is described of 3-amino-2,3-dideoxy-l-arabino-hexose (10), methyl 2,3-dideoxy-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (17), methyl 3-amino-2,3-dideoxy-α-l-ribo-hexopyranoside (21), methyl 2,3-dideoxy-3-trifluoroacetamido-α-l-xylo-hexopyranoside (26), and certain derivatives from methyl 4,6-O-benzylidene-2-deoxy-α-l-arabino-hexopyranoside (3). Conversion of 2-deoxy-l-arabino-hexose into 3 by modified, standard procedures, and on a large scale, gave a 75% yield.  相似文献   

8.
Condensation of 3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal with 2-methyl-(3,4,6-tri-O-acetyl- 1,2-dideoxy-α-D-glucopyrano)-[2′, 1′:4,5]-2-oxazoline in the presence of a catalytic amount of p-toluenesulfonic acid afforded crystalline 2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal (3) in 25% yield. Catalytic deacetylation of 3 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave 2-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-D-mannose (4). Treatment of 3 with boiling 0.5% methanolic hydrogen chloride under reflux gave methyl 2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-D-mannopyranoside (5) and methyl 2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-D-mannofuranoside (6). The inhibitory activities of 4, 5, and 6 against the hemagglutinating and mitogenic activities of Lens culinaris and Pisum sativum lectins and concanavalin A were assayed. From the results of these hapten inhibition studies, subtle differences of specificity between these D-mannose-specific lectins were confirmed.  相似文献   

9.
Three different approaches starting from 1,2-O-isopropylidene-α-d-glucofuranose were tested for the synthesis of daunosamine hydrochloride (24), the sugar constituent of the antitumor antibiotics daunomycin and adriamycin. The third route, affording 24 in ~5% overall yield in 11 steps, constitutes a useful, preparative synthesis, 3,5,6-Tri-O-benzoyl-1,2-O-isopropylidene-α-d-glucofuranose was converted via methyl 2,3-anhydro-β-d-mannofuranoside into methyl 2,3:5,6-dianhydro-α-l-gulofuranoside, the terminal oxirane ring of which was split selectively on reduction with borohydride, to afford methyl 2,3-anhydro-6-deoxy-α-l-gulofuranoside (31). Compound 31 was converted into methyl 2,3-anhydro-5-O-benzyl-6-deoxy-α-l-gulofuranoside, which was selectively reduced at C-2 on treatment with lithium aluminum hydride, affording methyl 5-O-benzyl-2,6-dideoxy-α-l-xylo-hexofuranoside. Subsequent mesylation, and replacement of the mesoloxy group by azide, with inversion, afforded methyl 3-azido-5-O-benzyl-2,6-dideoxy-α-l-lyxo-hexofuranoside, which could be converted into either 24 or methyl 3-acetamido-5-O-acetyl-2,3,6-trideoxy-α-l-lyxo-hexofuranoside, which can be used as a starting material for the synthesis of daunomycin analogs.  相似文献   

10.
Methyl 2,3-O-benzylidene-6-deoxy-α-L-mannopyranoside (2) reacted with butyllithium to give a mixture of 1,5-anhydro-3-C-butyl-1,2,6-trideoxy-L-ribo-hex-1-enitol (3) and its L-arabino analogue (4), together with methyl 2,3,6-trideoxy-α-L-erythro-hex-2-enopyranoside (5). In contrast, the 4-O-methyl analogue (8) of 2 was converted by butyllithium into methyl 2,6-dideoxy-4-O-methyl-α-L-erythro-hexo-pyranosid-3-ulose (9), which was further characterized as its oxime 10. The 4-O-benzyl analogue of 8, obtained as two separate diastereoisomers (6 and 7) differing in configuration at C-2 of the dioxolane ring, gave a complex mixture of products on treatment with butyllithium.  相似文献   

11.
《Carbohydrate research》1987,161(1):39-47
Condensation of methyl 2,6-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1,-d]-2-oxazoline (1) in 1,2-dichloroethane, in the presence of p-toluenesulfonic acid, afforded a trisaccharide derivative which, on deacetylation, gave methyl 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2,6-di-O-benzyl-β-d- glactopyranoside (5). Hydrogenolysis of the benzyl groups of 5 furnished the title trisaccharide (6). A similar condensation of methyl 2,3-di-O-benzyl-β-d-galactopyranoside with 1 produced a partially-protected disacchraide derivative, which, on O-deacetylation followed by hydrogenolysis, gave methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-β-d-glactopyranoside (10). Condensation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-benzyl-β-d- galactopyranoside with 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of powdered mercuric cyanide gave a fully-protected tetrasaccharide derivative, which was O-deacetylated and then subjected to catalytic hydrogenation to furnish methyl O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-β-d-galactopyranosyl-(1å3)-O-(2-acetamido-2-deoxy- β-d-glucopyranosyl)-(1å3)-β-d-galactopyranoside (15). The structures of 6, 10, and 15 were established by 13C-n.m.r. spectroscopy.  相似文献   

12.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

13.
Reduction of 1,6-anhydro-3,4-dideoxy-β-D-glycero-hex-3-enopyranos-2-ulose (levoglucosenone) with lithium aluminium hydride afforded principally 1,6-anhydro-3,4-dideoxy-β-D-threo-hex-3-enopyranose (3), which was converted into 3,4-dihydro-2(S)-hydroxymethyl-2H-pyran (8) following acid-catalysed methanolysis and reductive rearrangement of the resulting α-glycoside 4 with lithium aluminium hydride. 1,6-Anhydro-3,4-dideoxy-2-O-toluene-p-sulphonyl-β-D-threo-hexopyranose, prepared from 3, reacted slowly with sodium azide in hot dimethyl sulphoxide to give 1,6-anhydro-2-azido-2,3,4-trideoxy-β-D-erythro-hexopyranose, which was transformed into a mixture of methyl 2-acetamido-6-O-acetyl-2,3,4-trideoxy-α-D-erythro-hexopyranoside (10) and the corresponding β anomer following acid-catalysed methanolysis, catalytic reduction, and acetylation. Acid treatment of methyl 4,6-O-benzylidene-3-deoxy-α-D-erythro-hexopyranosid-2-ulose yielded the enone 15, which was readily transformed into methyl 6-O-acetyl-3,4-dideoxy-α-D-glycero-hexopyranosid-2-ulose (19). Procedures for the conversions of DL-8, 10, and 19 into methyl 2,6-diacetamido-2,3,4,6-tetradeoxy-α-D-erythro-hexopyranoside (methyl N,N′-di-acetyl-α-purpurosaminide C) have already been described.  相似文献   

14.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

15.
Treatment of methyl β-d-ribofuranoside with acetone gave methyl 2,3-O-isopropylidene-β-d-ribofuranoside (1, 90%), whereas methyl α-d-ribofuranoside gave a mixture (30%) of 1 and methyl 2,3-O-isopropylidene-α-d-ribofuranoside (1a). On oxidation, 1 gave methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside (2), whereas no similar product was obtained on oxidation of 1a. Ethynylmagnesium bromide reacted with 2 in dry tetrahydrofuran to give a 1:1 mixture (95%) of methyl 6,7-dideoxy-2,3-O-isopropylidene-β-d-allo- (3) and -α-l-talo-hept-6-ynofuranoside (4). Ozonolysis of 3 and 4 in dichloromethane gave the corresponding d-allo- and l-talo-uronic acids, characterized as their methyl esters (5 and 6) and 5-O-formyl methyl esters (5a and 6a). Ozonolysis in methanol gave a mixture of the free uronic acid and the methyl ester, and only a small proportion of the 5-O-formyl methyl ester. Malonic acid reacted with 2 to give methyl 5,6-dideoxy-2,3-O-isopropylidene-β-d-ribo-trans-hept-5-enofuranosiduronic acid (7).  相似文献   

16.
3- O-(2-Acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-galactopyranose (10, “Lacto-N-biose II”) was synthesized by treatment of benzyl 6-O-allyl-2,4-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-oxazoline (5), followed by selective O-deallylation, O-deacetylation, and catalytic hydrogenolysis. Condensation of 5 with benzyl 6-O-allyl-2-O-benzyl-α-d-galactopyranoside, followed by removal of the protecting groups, gave 10 and a new, branched trisaccharide, 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-galactopyranose (27).  相似文献   

17.
N-Acetylepidaunosamine (3-acetamido-2,3,6-trideoxy-d-ribo-hexopyranose) was converted into the diethyl dithioacetal and this was cyclized with HgCi2, HgO, and MeOH, to give methyl 3-acetamido-2,3,6-trideoxy-α- and -β-d-ribo-hexofuranoside (4 and 5). These anomers were acetylated or (p-nitrobenzoyl)ated, and the esters were subjected to acetolysis, to afford 3-acetamido-1,5-di-O-acetyl-2,3,6-trideoxy-d-ribo-hexofuranose and 3-acetamido-1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-d-ribo-hexofuranose, respectively. Alternatively, compounds 4 and 5 were hydrolyzed to the free bases with barium hydroxide, and these were converted into the trifluoroacetamido derivatives which, on (p-nitrobenzoyl)ation and acetolysis, afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-d-ribo-hexofuranose. To prepare the corresponding daunosamine derivative, 2,3,6-trideoxy-3-(trifluoroacetamido)-l-lyxo-hexopyranose was converted into the diethyl dithioacetal, and this was cyclized in the same way, to afford methyl 2,3,6-trideoxy-3-(trifluoroacetamido)-α- and -β-l-lyxo-hexofuranoside. On (p-nitrobenzoyl)ation and acetolysis, both afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexofuranose.  相似文献   

18.
A new route is described for preparing methyl 4,6-di-O-methyl-α-d-mannopyranoside (5) via methyl 2,3-di-O-p-tolylsulfonyl-α-d-mannopyranoside (3) as an intermediate. The retention of the mannopyranoside configuration and ring form was confirmed by proton n.m.r. spectroscopy and by m.s. of peracetylated aldononitrile derivatives. Mass-spectral fragmentation-pathways previously proposed were confirmed for 5-O-acetyl-2,3,4,6-tetra-O-methyl-, 2,5-di-O-acetyl-3,4,6-tri-O-methyl-, and 3,5-di-O-acetyl-2,4,6-tri-O-methyl-d-mannononitrile.  相似文献   

19.
Starting from methyl 4,6-dichloro-4,6-dideoxy-α-D-galactopyranoside (1), D-chalcose (4,6-dideoxy-3-O-methyl-D-xcylo-hexopyranose) (5) was prepared by dechlorination with tributyltin hydride, selective benzoylation with benzoyl cyanide at O-2, methylation at O-3, and acid hydrolysis. D-Chalcose (5) was obtained as well by direct methylation of 1 with diazomethane at O-3, reduction with tin hydride, and hydrolysis. Chalcosyl bromide prepared from 5 was not very suitable for β-glycoside synthesis under Koenigs-Knorr conditions, and better results were obtained with 2- O-acetyl-4,6-dichloro-4,6-dideoxy-3-O-methyl-α-D-galactopyranosyl bromide, which gave β-glycosides with methanol, cyclohexanol, benzyl alcohol, 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose, and methyl 2,3-di-O-benzyl-6-deoxy-α-D-glucopyranoside. After dechlorination with tributyltin hydride, the corresponding β-glycosides of D-chalcose were obtained in good yield.  相似文献   

20.
Evernitrose (2,3,6-trideoxy-3-C-methyl-4-O-methyl-3-nitro-L-arabino-hexopyranose) was synthesized from methyl 2,6-dideoxy-4-O-methyl-α-L-erythro-hexopyranosid-3-ulose (2) through introduction of an amino group attached to the tertiary branching carbon by the method of Bourgeois, and subsequent oxidation of the amino group by m-chloroperoxybenzoic acid to a nitro group. 3-Cyano-3-O-mesylation of 2 by Bourgeois's method gave exclusively the desired product having the L-ribo configuration; furthermore, the β anomer of 2 gave the L-ribo and L-arabino products in the ratio of 1:2. The latter compound was converted into 3-epi-evernitrose by a similar sequence of reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号