共查询到20条相似文献,搜索用时 0 毫秒
1.
Crystallization is a commonly used method for the purification and formulation of proteins. In order to harmonize crystallization with the mechanical separation process, it is necessary to estimate early the separation conditions of protein crystals. To fulfill this requirement, the feed material for filtration is minimized by reducing the filter area. The filtration behavior of lysozyme crystals in pressure filters with two different filter areas was compared. Crystal slurries with different mean crystal sizes and shapes were produced and the influence of the size and shape on the scalability of filtration data was examined. It was found that for different aggregated crystal structures and isometric crystals, the larger the compressibility of the cake was, the larger were the deviations for the two considered filter areas. For needle‐shaped crystals, the compressibility was not subject to deviations, but the absolute filter cake resistance was. Furthermore, the deviations of the cake resistances increased with higher pressures for all product systems. It was indicated that upscaling from the small filter area is possible for low compressible product systems and at low pressures. With high compressible products and for needle‐like crystals, the filtration time is underestimated with the small filter area. 相似文献
2.
Mark Duerkop Eva Berger Astrid Dürauer Alois Jungbauer 《Engineering in Life Science》2018,18(3):169-178
Neither the influence of high shear rates nor the impact of cavitation on protein aggregation is fully understood. The effect of cavitation bubble collapse‐derived hydroxyl radicals on the aggregation behavior of human serum albumin (HSA) was investigated. Radicals were generated by pumping through a micro‐orifice, ultra‐sonication, or chemically by Fenton's reaction. The amount of radicals produced by the two mechanical methods (0.12 and 11.25 nmol/(L min)) was not enough to change the protein integrity. In contrast, Fenton's reaction resulted in 382 nmol/(L min) of radicals, inducing protein aggregation. However, the micro‐orifice promoted the formation of soluble dimeric HSA aggregates. A validated computational fluid dynamic model of the orifice revealed a maximum and average shear rate on the order of 108 s?1 and 1.2 × 106 s?1, respectively. Although these values are among the highest ever reported in the literature, dimer formation did not occur when we used the same flow rate but suppressed cavitation. Therefore, aggregation is most likely caused by the increased surface area due to cavitation‐mediated bubble growth, not by hydroxyl radical release or shear stress as often reported. 相似文献
3.
Advances in single-use technologies can enable greater speed, flexibility, and a smaller footprint for multi-product production facilities, such as at a contract manufacturer. Recent efforts in the area of cell line and media optimization have resulted in bioreactor productivities that exceed 8 g/L in fed-batch processes or 25 g/L in high-density cell culture processes. In combination with the development of single-use stirred tank bioreactors with larger working volumes, these intensified upstream processes can now be fit into a single-use manufacturing setting. Contrary to these upstream advances, downstream single-use technologies have been slower to follow, mostly limited by low capacity, high cost, and poor scalability. In this study we describe a downstream process based solely on single-use technologies that meets the challenges posed by expression of a mAb (IgG(1)) in a high-density suspension culture of PER.C6 cells. The cell culture harvest was clarified by enhanced cell settling (ECS) and depth filtration. Precipitation was used for crude purification of the mAb. A high capacity chromatographic membrane was then used in bind/elute mode, followed by two membranes in flow-through (FT) mode for polishing. A proof of concept of the entire disposable process was completed for two different scales of the purification train. 相似文献
4.
Sindelia Freitas Sónia Canário José A. L. Santos Duarte M. F. Prazeres Dr. 《Biotechnology journal》2009,4(2):265-278
Robust cGMP manufacturing is required to produce high-quality plasmid DNA (pDNA). Three established techniques, isopropanol and ammonium sulfate (AS) precipitation (PP), tangential flow filtration (TFF) and aqueous two-phase systems (ATPS) with PEG600/AS, were tested as alternatives to recover pDNA from alkaline lysates. Yield and purity data were used to evaluate the economic and environmental impact of each option. Although pDNA yields =90% were always obtained, ATPS delivered the highest HPLC purity (59%), followed by PP (48%) and TFF (18%). However, the ability of ATPS to concentrate pDNA was very poor when compared with PP or TFF. Processes were also implemented by coupling TFF with ATPS or AS-PP. Process simulations indicate that all options require large amounts of water (100–200 tons/kg pDNA) and that the ATPS process uses large amounts of mass separating agents (65 tons/kg pDNA). Estimates indicate that operating costs of the ATPS process are 2.5-fold larger when compared with the PP and TFF processes. The most significant contributions to the costs in the PP, TFF and ATPS processes came from operators (59%), consumables (75%) and raw materials (84%), respectively. The ATPS process presented the highest environmental impact, whereas the impact of the TFF process was negligible. 相似文献
5.
Luís Borlido Leila Moura Ana M. Azevedo Ana C. A. Roque Dr. Maria R. Aires-Barros Dr. José Paulo S. Farinha 《Biotechnology journal》2013,8(6):709-717
Monoclonal antibodies (mAbs) are important therapeutic proteins. One of the challenges facing large-scale production of monoclonal antibodies is the capacity bottleneck in downstream processing, which can be circumvented by using magnetic stimuli-responsive polymer nanoparticles. In this work, stimuli-responsive magnetic particles composed of a magnetic poly(methyl methacrylate) core with a poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) shell cross-linked with N, N'-methylenebisacrylamide were prepared by miniemulsion polymerization. The particles were shown to have an average hydrodynamic diameter of 317 nm at 18°C, which decreased to 277 nm at 41°C due to the collapse of the thermo-responsive shell. The particles were superparamagnetic in behavior and exhibited a saturation magnetization of 12.6 emu/g. Subsequently, we evaluated the potential of these negatively charged stimuli-responsive magnetic particles in the purification of a monoclonal antibody from a diafiltered CHO cell culture supernatant by cation exchange. The adsorption of antibodies onto P(NIPAM-co-AA)-coated nanoparticles was highly selective and allowed for the recovery of approximately 94% of the mAb. Different elution strategies were employed providing highly pure mAb fractions with host cell protein (HCP) removal greater than 98%. By exploring the stimuli-responsive properties of the particles, shorter magnetic separation times were possible without significant differences in product yield and purity. 相似文献
6.
Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration 总被引:1,自引:0,他引:1
K. Yasotha M.K. Aroua K.B. Ramachandran I.K.P. Tan 《Biochemical Engineering Journal》2006,30(3):260-268
Medium-chain-length (mcl) polyhydroxyalkanoates (PHAs) are biodegradable polyesters accumulated intracellularly as energy resources by bacterial species such as Pseudomonas putida. The most popular method for PHA recovery in the downstream processing is solvent extraction using chloroform and methanol. An alternate method is bioseparation using enzymatic digestion process which eliminates the need for hazardous solvents. This research focuses on an attempt to optimize the recovery of PHAs by solubilisation of non-PHA granules through enzymatic treatments such as; Alcalase (to digest the denatured proteins), sodium dodecyl sulfate (SDS) to assist solubilisation, ethylene diamine tetra acetic acid (EDTA) to complex divalent cations and lysozyme to digest the peptidoglycan wall enveloping the cell. The experiment was designed through Taguchi's design of experiment (DOE) using Qualitek-4 software. The results show that Alcalase enzyme used had the most significant effect on the treatment process and contributed to about 71.5% in terms of process factor importance among the different factors on treatment performance for PHA recovery. It is desired to recover the PHA granules in water suspension after the enzymatic treatment by removing the solubilised non-PHA cell material through crossflow ultrafiltration system and purified through continuous diafiltration process. Final purity of PHA in water suspension obtained using GC analysis is 92.6%, with a nearly 90% recovery, thus concluding that this method is indeed a suitable alternative. 相似文献
7.
Aptamers are single‐stranded synthetic oligonucleotides that are able to capture their target molecule with high affinity and specificity. Therefore, they can be thought of as nucleic acid‐based alternative to antibodies, which have several advantages over their amino acid‐based counterparts. Consequently, aptamers can be used in different applications based on molecular recognition including affinity separations. This review will summarize the state‐of‐the‐art in aptamer‐based affinity separations; will discuss the current limitations and will highlight possible future prospects. The first part will point out the advantages of aptamers in downstream processing. Here, the properties of aptamers will be discussed along with their implications on downstream processing from a user's point of view. In the second part, a brief summary of the literature is given with focus on aptamer‐based separation of proteins. Finally, some drawbacks of aptamers will be illustrated and possibilities to overcome these limitations will be suggested. New technologies in the fields of aptamer selection and synthesis are expected to further promote the use of aptamers as affinity ligands in downstream processing. 相似文献
8.
Telma Barroso Abid Hussain Ana C. A. Roque Prof. Ana Aguiar-Ricardo 《Biotechnology journal》2013,8(6):671-681
Polymer monoliths are an efficient platform for antibody purification. The use of monoclonal antibodies (mAbs) and engineered antibody structures as therapeutics has increased exponentially over the past few decades. Several approaches use polymer monoliths to purify large quantities of antibody with defined clinical and performance requirements. Functional monolithic supports have attracted a great deal of attention as they offer practical advantages for antibody purification, such as more rapid analysis, smaller sample volume requirements and the opportunity for a greater target molecule enrichment. This review focuses on the development of synthetic and natural polymer-based monoliths for antibody purification. The materials and methods employed in monolith production are discussed, highlighting the properties of each system. We also review the structural characterization techniques available using monolithic systems and their performance under different chromatographic approaches to antibody capture and release. Finally, a summary of monolithic platforms developed for antibody separation is presented, as well as expected trends in research to solve current and future challenges in this field. This review comprises a comprehensive analysis of proposed solutions highlighting the remarkable potential of monolithic platforms. 相似文献
9.
Frida Ojala Anton Sellberg Thomas Budde Hansen Ernst Broberg Hansen Bernt Nilsson 《Biotechnology journal》2015,10(11):1814-1821
One important aspect of antibody separation being studied today is aggregation, as this not only leads to a loss in yield, but aggregates can also be hazardous if injected into the body. The aim of this study was to determine whether the methodology applied in the previous study could be used to predict the aggregation of a different batch of IgG1, and to model the aggregation occurring in a SEC column. Aggregation was found to be reversible. The equilibrium parameter was found to be 272 M‐1 and the reaction kinetic parameter 1.33 × 10‐5 s‐1, both within the 95% confidence interval of the results obtained in the previous work. The effective diffusivities were estimated to be 1.45 × 10‐13 and 1.90 10‐14 m2/s for the monomers and dimers, respectively. Good agreement was found between the new model and the chromatograms obtained in the SEC experiments. The model was also able to predict the decrease of dimers due to the dilution and separation in the SEC column during long retention times. 相似文献
10.
Schiraldi C Carcarino IL Alfano A Restaino OF Panariello A De Rosa M 《Biotechnology journal》2011,6(4):410-419
Recently the possibility of producing the capsular polysaccharide K4, a fructosylated chondroitin, in fed-batch experiments was assessed. In the present study, a novel downstream process to obtain chondroitin from Escherichia coli K4 fermentation broth was developed. The process is simple, scalable and economical. In particular, downstream procedures were optimized with a particular aim of purifying a product suitable for further chemical modifications, in an attempt to develop a biotechnological platform for chondroitin sulfate production. During process development, membrane devices (ultrafiltration/diafiltration) were exploited, selecting the right cassette cut-offs for different phases of purification. The operational conditions (cross-flow rate and transmembrane pressure) used for the process were determined on an ?KTA cross-flow instrument (GE Healthcare, USA), a lab-scale automatic tangential flow filtration system. In addition, parameters such as selectivity and throughput were calculated based on the analytical quantification of K4 and defructosylated K4, as well as the major contaminants. The complete downstream procedure yielded about 75% chondroitin with a purity higher than 90%. 相似文献
11.
Protein A磁性纳米颗粒载体的制备及应用 总被引:1,自引:0,他引:1
本研究采用本课题组合成的表面氨基化磁性纳米微球,首先通过化学共价交联制备了葡萄球菌Protein A磁性纳米微球载体(SPA-MP),并探讨了载体制备的优化条件。然后根据生物分子特异性亲合作用原理,在外加磁场的定向控制下,通过亲和吸附、清洗和解吸附等操作,探讨了SPA-MP载体在抗体分离纯化领域的应用可行性。载体制备优化实验结果显示,通过改变蛋白质浓度、交联剂浓度和交联剂活化时间可以制备不同表面密度的SPA-MP载体。300 μg SPA,2.5% (V/V)戊二醛浓度和3小时的活化时间可以获取表面密度高达35 mg SPA/g磁性纳米微球的载体。此外,应用结果显示每克SPA-MP磁性微球载体可以结合高达14 mg 的CD25抗体,同时可有效地分离纯化人抗血清样品中的IgG抗体。 相似文献
12.
Affinity precipitation is a bioseparation technique where the affinity ligand is coupled to a stimuliresponsive polymer. Stimuli-responsive polymers show abrupt, yet reversible, phase transition (precipitation) in response to a small change in an environmental parameter. The corresponding ligand conjugates can be used to co-precipitate and thereby capture and isolate target molecules from complex solutions such as culture supernatants and cell lysates. The approach is compatible with a 'discardibles only' type of downstream process and can be scaled over several orders of magnitude. This report discusses the set-up and development of affinity precipitation procedures, the related instrumentation and scale up, as well as applications for the isolation of proteins and polynucleotides. 相似文献
13.
目的建立一种高效提取、分离、纯化鼠尾胶原蛋白的方法。方法通过对鼠尾进行剥离获得鼠尾腱,用Tris-HCl缓冲液、胃蛋白酶处理获得鼠尾胶原蛋白原液、反复使用氯化钠溶液进行分级盐析、醋酸溶液复溶进行鼠尾胶原蛋白的纯化。超纯水透析除去无机盐类获得纯化的鼠尾胶原蛋白。通过SDS-PAGE蛋白质电泳、氨基酸含量分析等技术手段鉴定。结果本研究建立的方法可以获得高纯度的鼠尾胶原蛋白,纯度达到电泳纯。与国外进口的商业化鼠尾胶原蛋白产品相比无差异。研究了提取、分离、纯化参数对得率、纯度的影响,建立了最优的鼠尾胶原蛋白提取条件,胃蛋白酶用量:1∶500,酶解时间:72 h,盐析浓度:2 mol/L,提取所用酸溶液:0.05mol/L醋酸溶液。结论为鼠尾胶原蛋白的扩大化生产提供了合适的工艺参数,为大量获得鼠尾胶原蛋白并进行更深层次的功效方面研究提供了理论支持和实践基础。 相似文献
14.
The self-associative properties of apolipoprotein A-I(Milano) (apoA-I(M)) were investigated in relationship to its anion exchange behavior on Q-Sepharose-HP with and without the addition of urea as a denaturant. Self-association was dependent on protein and urea concentration and both influenced interactions of the protein with the chromatographic surface. In the absence of urea, apoA-I(M) was highly associated and existed primarily as a mixture of homodimer, tetramer and hexamer forms. Under these conditions, since the binding strength was greater for the oligomer forms, broad, asymmetrical peaks were obtained in both isocratic and gradient elution. Adding urea depressed self-association and caused unfolding. This resulted in sharper peaks but also decreased the binding strength. Thus, under these conditions chromatographic elution occurred at lower salt concentrations. The adsorption isotherms obtained at high protein loadings were also influenced by self-association and by the varying binding strength of the differently associated and unfolded forms. The isotherms were thus dependent on protein, urea, and salt concentration. Maximum binding capacity was obtained in the absence of urea, where adsorption of oligomers was shown to be dominant. Adding urea reduced the apparent binding capacity and weakened the apparent binding strength. A steric mass action model accounting for competitive binding of the multiple associated forms was used to successfully describe the equilibrium binding behavior using parameters determined from isocratic elution and isotherm experiments. 相似文献
15.
《Process Biochemistry》2014,49(6):1005-1011
In negative chromatography, the impurities bind on the adsorbent, and the product is allowed to flow through the chromatographic column. Negative chromatography is an alternative to positive chromatography under certain circumstances and has been used to purify various biomolecules. For this review, a detailed survey of the performance of reported studies on negative chromatography was conducted. The applications of negative chromatography in the capture and intermediate purification steps for biomolecules (e.g., plasmid DNA, antibodies, enzymes, hemoglobin, virus particles and cells) are reviewed. The negative chromatographic adsorbents adsorb the impurities through surface charge, hydrophobic interaction at specific sites on the surface, hydrophobic interaction, hydrogen bonding and functional groups. Examples of applications of negative chromatography according to the type of chromatography matrix used are summarized and discussed. In addition, the effects of operating conditions (initial protein concentration, buffer ions, pH and salt concentration) are discussed, and the criteria for choosing negative or positive chromatography are summarized. The literature survey showed that there will be future limitations and challenges ahead in implementation of negative chromatography. Possible solutions to the limitations and challenges of negative chromatography and future trends for developing negative chromatography are discussed. 相似文献
16.
Catalase, an oxidoreductase enzyme, works as a detoxification system inside living cells against reactive oxygen species formed as a by-product of different metabolic reactions. The enzyme is found in a wide range of aerobic and anaerobic organisms. Catalase has also been employed in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to its other applications in textile, paper, food and pharmaceutical industries. New applications for catalases are constantly emerging thanks to their high turnover rate, distinct evolutionary origin, relatively simple and well-defined reaction mechanisms. The following review provides comprehensive information on isolation, production and purification of catalases with different techniques from various microbial sources along with their types, structure, mechanism of action and applications. 相似文献
17.
Daria Popova Adam Stonier David Pain Nigel J. Titchener‐Hooker Suzanne S. Farid 《Biotechnology journal》2016,11(7):899-909
Increases in mammalian cell culture titres and densities have placed significant demands on primary recovery operation performance. This article presents a methodology which aims to screen rapidly and evaluate primary recovery technologies for their scope for technically feasible and cost‐effective operation in the context of high cell density mammalian cell cultures. It was applied to assess the performance of current (centrifugation and depth filtration options) and alternative (tangential flow filtration (TFF)) primary recovery strategies. Cell culture test materials (CCTM) were generated to simulate the most demanding cell culture conditions selected as a screening challenge for the technologies. The performance of these technology options was assessed using lab scale and ultra scale‐down (USD) mimics requiring 25–110mL volumes for centrifugation and depth filtration and TFF screening experiments respectively. A centrifugation and depth filtration combination as well as both of the alternative technologies met the performance selection criteria. A detailed process economics evaluation was carried out at three scales of manufacturing (2,000L, 10,000L, 20,000L), where alternative primary recovery options were shown to potentially provide a more cost‐effective primary recovery process in the future. This assessment process and the study results can aid technology selection to identify the most effective option for a specific scenario. 相似文献
18.
Ana Raquel Fortuna Florian Taft Louis Villain Michael W. Wolff Udo Reichl 《Engineering in Life Science》2018,18(1):29-39
Downstream processing remains one of the biggest challenges in manufacturing of biologicals and vaccines. This work focuses on a Design of Experiments approach to understand factors influencing the performance of sulfated cellulose membrane adsorbers for the chromatographic purification of a cell culture‐derived H1N1 influenza virus strain (A/Puerto Rico/8/34). Membranes with a medium ligand density together with low conductivity and a high virus titer in the feed stream resulted in optimum virus yields and low protein and DNA content in the product fraction. Flow rate and salt concentration in the buffer used for elution were of secondary importance while membrane permeability had no significant impact on separation performance. A virus loss of 2.1% in the flow through, a yield of 57.4% together with a contamination level of 5.1 pgDNA HAU?1 and 1.2 ngprot HAU?1 were experimentally confirmed for the optimal operating point predicted. The critical process parameters identified and their optimal settings should support the optimization of sulfated cellulose membrane adsorbers based purification trains for other influenza virus strains, streamlining cell culture‐derived vaccine manufacturing. 相似文献
19.
An airlift draft-tube fluidized bioreactor has been designed and tested for applications in protein bioseparation. Operating parameters and geometrical dimensions of the bioreactor were optimized to ensure fluid circulation in a defined cyclic pattern between the riser and the downcomer. The overall directionality of liquid flow generates homogeneous field of low shear and achieves good mixing efficiency. Bioseparation of proteins was achieved from solutions containing both BSA and BHb at different initial concentrations and at pH 7. Similar adsorption capacities of both proteins were observed in single protein adsorption experiments at pH 7. Compressibility of BHb allowed for high adsorption capacity, in addition to the hydrophobic interaction forces. Apparently the homogeneous and lower shear generated by the airlift bioreactor reduces the compressibility of adsorbed BHb. This allowed for higher BSA adsorption from solutions containing BSA and BHb mixtures. Conventional batch adsorption experiments showed more adsorption of BHb, which reduces bioseparation efficiency. 相似文献
20.
Acetonitrile (ACN)–water system is one of the most commonly used mobile phases in practical reverse-phase high-performance liquid chromatography (RP-HPLC). However, a higher concentration of ACN (normally greater than 60% (v/v)) is required to elute the target protein from the RP-HPLC column in which, further steps to remove the ACN from the protein samples are demanded. It has been demonstrated that the phase separation occurring under the sub-zero temperature could easily remove the majority of ACN from the effluent of RP-HPLC. Recently, we found that the comparable phase separation could be achieved by adding a small amount of proper salts, such as K2HPO4 and KH2PO4, and the phase separation could take place effectively at 4 °C where the protein-purification processes were usually carried out. In addition, the pH value of the solution could be maintained properly by using potassium phosphate buffer (pH 7.0). With an optimized condition for this salt-induced phase separation, we demonstrated that greater than 60% of ACN could be easily removed; on the other hand, more than 90% of water-soluble protein could be successfully recovered within five hours. 相似文献