首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Carbohydrate research》1986,153(2):271-283
The ability of imidates, thioimidates, and dithioates to react with o-aminophenol (2) and 5,6-diamino-1,3-dimethyluracil (6) was studied, using non-saccharide model compounds, as well as saccharide derivatives. All of the model compounds gave 2-methylbenzoxazole, but only ethyl dithioacetate gave a purine derivative with 6. Methyl 2,5-anhydro-d-allonoimidate hydrochloride reacted with 2 to yield 2-β-d-ribofuranosylbenzoxazole, but failed to react with compound 6. On reaction with compound 6 such fully acylated thioimidates as ethyl and benzyl 2,5-anhydrotri-O-benzoyl- or tri-O-p-toluoyl-d-allonothiomidate hydrochloride yielded amidines that underwent aromatization of the furanose ring. Such monoacylated thioimidates as ethyl or benzyl 2,5-anhydro-6-O-benzoyl--d-allonothioimidate hydrochloride yielded, with compound 6, 8-(5-O-benzoyl-β-d-ribofuranosyl)-1,3-dimethylxanthine, without aromatization. Such dithioates as benzyl 2,5-anhydro-6-O-benzoyl-d-allonodithioate and ethyl 2,5-anhydrotri-O-benzoyl-d-allonodithioate were obtained by treating the corresponding thioimidate with H2S in pyridine. With compound 6, the first yielded 8-(5-O-benzoyl-β-d-ribofuranosyl)-1,3-dimethylxanthine, which afforded the free C-nucleoside 1,3-dimethyl-8-β-d-ribofuranosylxanthine on treatment with methanolic ammonia.  相似文献   

2.
Methyl 3-azido-2-O-benzoyl-3,4-dideoxy-β-dl-erythro-pentopyranoside (6) was synthesized through two routes in five steps from methyl 2,3-anhydro-4-deoxy-β-dl-erythro-pentopyranoside (1). The first route proceeded via selective azide displacement of the 3-tosyloxy group of methyl 4-deoxy-2,3-di-O-tosyl-α-dl-threo-pentopyranoside, followed by detosylation and benzoylation. The second route consisted, with a better overall yield, in the azide displacement of the mesyloxy group of methyl O-benzoyl-4-deoxy-3-O-methylsulfonyl-α-dl-threo-pentopyranoside (10), obtained by benzylate opening of 1, followed by benzoylation, debenzylation, and mesylation. Compound 6 was transformed into its glycosyl chloride, further treated by 6-chloropurine to give the nucleoside 9-(3-azido-2-O-benzoyl-3,4-dideoxy-β-dl-erythro-pentopyranosyl)-6-chloropurine (13). When treated with propanolic ammonia, 13 yielded 9-(3-azido-3,4-dideoxy-β-dl-erythro-pentopyranosyl)adenine.  相似文献   

3.
Nitrous acid deamination of 2-amino-1,6-anhydro-2-deoxy-β-D-glucopyranose (1) in the presence of weakly acidic, cation-exchange resin gave 1,6:2,3-dianhydro-β-D-mannopyranose (3) and 2,6-anhydro-D-mannose (6), characterized, respectively, as the 4-acetate of 3 and the per-O-acetylated reduction product of 6, namely 2,3,4,6- tetra-O-acetyl-1,5-anhydro-D-mannitol, obtained in the ratio of 7:13. Comparative deaminatior of the 4-O-benzyl derivative of 1 led to similar qualitative results. Deamination of 3-amino-1,6-anhydro-3-deoxy-β-D-glucopyranose gave 1,6:2,3- and 1,6:3,4-dianhydro-β-D-allopyranose (13 and 16), characterized as the corresponding acetates, obtained in the ratio of 31:69, as well as the corresponding p-toluenesulfonates. Deamination of 4-amino-1,6-anhydro-4-deoxy-β-D-glucopyranose and of its 2-O-benzyl derivative gave the corresponding 1,6:3,4-D-galacto dianhydrides as the only detectable products. 2,5-Anhydro-D-glucose, characterized as the 1,3,4,6-tetra-O- acetyl derivative of the corresponding anhydropolyol, was obtained in 39% yield from the same deamination reaction performed on 2-amino-1,6-anhydro-2-deoxy-β-D- mannopyranose (24). In 90% acetic acid, the nitrous acid deamination of 24, followed by per-O-acetylation, gave only 1,3-4-tri-O-acetyl-2,5-anhydro-α-D-glucoseptanose. In the case of 1,6-anhydro-3,4-dideoxy-3,4-epimino-β-D-altropyranose, only the corresponding glycosene was formed, namely, 1,6-anhydro-3,4-dideoxy-β-D-threo--hex-3-enopyranose.  相似文献   

4.
Acidic dehydration of D-mannitol (1) gave a mixture of anhydrides (2) that was isopropylidenated and subsequently tritylated. A single component crystallized from the resulting mixture and was shown to be the novel 2,5-anhydro-1,3-O-isopropylidene-6-O-trityl-D-glucitol (4) by chemical and physical analysis and by comparison of its deprotected, dibenzoylated derivative (10) with authentic 2,5-anhydro-1,6-di-O-benzoyl-D-glucitol. Acid hydrolysis of 4 afforded pure 2,5-anhydro-D-glucitol (9) in better yield than by the previously reported route. The 4-O-acetyl (5), 4-O-chloro-acetyl (6), 4-O-methyl (7), and 4-O-(methylsulfonyl) (8) derivatives of 4, the tetra-O-acetyl (11) derivative of 9, and the 3,4-di-O-acetyl (12) derivative of 10, have been prepared and spectrally characterized. Complete proton-n.m.r. analysis yields first-order coupling constants that indicate the E1 (D) conformation for the tetrahydrofuran ring and the chair conformation for the 1,3-dioxane ring of 4-2-8. Obtainable coupling constants suggest that 11 and 12 exist in the oE and/or oT1, conformations.  相似文献   

5.
The synthesis of 2,5-anhydro-3-O-methylsulfonyl-6-thio-1,4-thioanhydro-D-galactitol (4; type A structure) and 2,5-anhydro-3,4-di-O-methylsulfonyl-1,6-thioanhydro-D-glucitol (10, type B structure), starting from 2,5-anhydro-1,6-dibromo-1,6-dideoxy-3,4-di-O-methylsulfonyl-D-glucitol (1) is described. The 4-O-methyl-sulfonyl group of 10 can be displaced by nucleophiles with retention of configuration. In this reaction, a cyclic sulfonium intermediate 21 is involved, which, depending on the nucleophilicity of the anion, leads to different ratios of type A and B compounds. Introduction of a three-membered ring into the 3,4-position of type B compounds yielded tricyclic derivatives of allitol.  相似文献   

6.
Ammonium hydroxide treatment of 1,6:2,3-dianhydro-4-O-benzyl-β-D-mannopyranose, followed by acetylation, gave 2-acetamido-3-O-acetyl-1,6-anhydro-4-O-benzyl-2-deoxy-β-D-glucopyranose which was catalytically reduced to give 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose (6), the starting material for the synthesis of (1→4)-linked disaccharides bearing a 2-acetamido-2-deoxy-D-glucopyranose reducing residue. Selective benzylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose gave a mixture of the 3,4-di-O-benzyl derivative and the two mono-O-benzyl derivatives, the 4-O-benzyl being preponderant. The latter derivative was acetylated, to give a compound identical with that just described. For the purpose of comparison, 2-acetamido-4-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose has been prepared by selective acetylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose.Condensation between 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and 6 gave, after acetolysis of the anhydro ring, the peracetylated derivative (17) of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose. A condensation of 6 with 3,4,6-tri-O-acetyl-2-deoxy-2-diphenoxyphosphorylamino-α-D-glucopyranosyl bromide likewise gave, after catalytic hydrogenation, acetylation, and acetolysis, the peracylated derivative (21) of di-N-acetylchitobiose.  相似文献   

7.
A convenient preparative route involving eleven steps starting from D-glucose is described for the synthesis of D-ristosamine (15) hydrochloride. Methyl 2-deoxy-β-D-arabino-hexopyranoside, prepared from 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex- 1-enitol, was benzylidenated, and the product mesylated to give methyl 4,6-O-benzylidene-2-deoxy-3-O-methylsulfonyl-β-D-arabino-hexopyranoside. Azidolysis of this compound and subsequent opening of the 1,3-dioxane ring with N-bromosuccinimide gave methyl 3-azido-4-O-benzoyl-6-bromo-2,3,6-trideoxy-βD-ribo-hexopyranoside. Simultaneous reduction of the azido and bromo groups gave a mixture that was benzoylated to give methyl N,O-dibenzoyl-β-D-ristosaminide and then hydrolyzed to 15 hydrochloride (3-amino-2,3,6-trideoxy-D-ribo-hexopyranose hydrochloride).  相似文献   

8.
Prumycin (1) and related compounds have been synthesized from benzyl 2-(benzyloxycarbonyl)amino-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside (4). Benzoylation of 4, followed by deisopropylidenation, gave benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-β-d-glucofuranoside (6), which was converted, via oxidative cleavage at C-5–C-6 and subsequent reduction, into the related benzyl β-d-xylofuranoside derivative (7). Benzylation of 3-O-benzoyl-2-(benzyloxycarbonyl)-amino-2-deoxy-d-xylopyranose (8), derived from 7 by hydrolysis, afforded the corresponding derivatives (9, 11) of β- and α-d-xylopyranoside, and compound 7 as a minor product. Treatment of benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-4-O-mesyl-β-d-xylopyranoside 10, formed by mesylation of 9, with sodium azide in N,N-dimethylformamide gave benzyl 4-azido-3-O-benzoyl-2-(benzyloxy-carbonyl)amino-2,4-dideoxy-α-l-arabinopyranoside (13), which was debenzoylated to compound 14. Selective reduction of the azide group in 14, and condensation of the 4-amine with N-[N-(benzyloxycarbonyl)-d-alaninoyloxy]succinimide, gave the corresponding derivative (15) of 1. Reductive removal of the protecting groups of 15 afforded 1. Prumycin analogs were also synthesized from compound 14. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

9.
3,4-Di-O-acetyl-2-O-benzyl-α-d-xylopyranosyl bromide (1) reacts with methyl 2,3-anhydro-α-d-ribopyranoside (2) to afford, in high yield, methyl 2,3-anhydro-4-O- (3,4-di-O-acetyl-2-O-benzyl-β-d-xylopyranosyl)-β-d-ribopyranoside (3). Deacetylation of 3 gave 4, which reacted with 2,3,4-tri-O-acetyl-α-d-xylopyranosyl bromide to give the branched tetrasaccharide derivative 5, which, in turn, was converted by a series or conventional reactions into methyl 4-O-[3,4-di-O-(β-d-xylopyranosyl)-β-d- xylopyranosyl]-β-d-xylopyranoside. The reaction of 1 with its hydrolysis product gave 3,4-di-O-acetyl-2-O-benzyl-α-d-xylopyranosyl 3,4-di-O-acetyl-2-O-benzyl-β-d-xylopyranoside, which was also isolated after the reaction of 1 with 2.  相似文献   

10.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

11.
O-α-d-Galactopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→4)-d-glucopyranose (12) was prepared by inversion of configuration at C-4″ of 2,3,2′,3′,6′,2″,3″-hepta-O-acetyl-1,6-anhydro-4″,6″-di-O-methylsulfonyl-β-maltotriose (7), followed by O-deacylation, acetylation, acetolysis, and de-O-acetylation. The intermediate 7 was obtained by treatment of 1,6-anhydro-β-maltotriose (2) with benzal chloride in pyridine, followed by acetylation, removal of the benzylidene group, and methane-sulfonylation. Selective tritylation of 2 and subsequent acetylation afforded 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-trityl-β-maltotriose (6), which was O-detritylated and p-toluenesulfonylated to give 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-p-tolylsulfonyl-β-maltotriose (13). Nucleophilic displacement of 13 with thioacetate, iodide, bromide, chloride, and azide ions gave 6″-S-acetyl- (14), 6″-iodo- (15), 6″-bromo- (16), 6″-chloro- (19), and 6″-azido- (20) 1,6-anhydro-β-maltotriose octaacetates, respectively. 6″Deoxy- (18) and 6″-acetamido-6″-deoxy (21) derivatives of 1,6-anhydro-β-maltotriose decaacetates were also prepared from 15 and 16, and 20, respectively. Acetolysis of 14, 15, 16, 18, 19, and 21 afforded 1,2,3,6,2′,3′,6′,2″,3″,4″-deca-O-acetyl-6″-S-acetyl (22), -6″-iodo (23), -6″-bromo (24), -6″-deoxy (25), -6″-chloro (26), and -6″-acetamido-6′-deoxy (27) derivatives of α-maltotriose, respectively. O-Deacetylation of 24, 25, and 26 furnished 6″-bromo-(28), 6″-deoxy- (29), and 6″-chloro- (30) maltotrioses, respectively, which on acetylation gave the corresponding β-decaacetates.  相似文献   

12.
2-Acetamido-5-amino-2,5-dideoxy-d-xylopyranosyl hydrogensulfite (11) has been synthesized from benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5,6-O-isopro-pylidene-β-d-glucofuranoside (1). O-Deisopropylidenation of 1 gave the triol 2, which was converted, via oxidative cleavage at C-5-C-6 and subsequent reduction, into the related benzyl β-d-xylofuranoside derivative (3). Catalytic reduction of benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5-O-tosyl-β-d-xylofuranoside, derived from 3 by selective tosylation, and subsequent N-acetylation, afforded benzyl 2-acetamido-2-deoxy-5-O-tosyl-β-d-xylofuranoside, which was treated with sodium azide to give the corresponding 5-azido derivative (6). (Tetrahydropyran-2-yl)ation of the product formed by hydrolysis of 6 gave 2-acetamido-5-azido-2,5-dideoxy-1,3- di-O-(tetrahydropyran-2-yl)-d-xylofuranose (9). Treatment of 2-acetamido-5-amino-2,5-dideoxy-1,3-di-O-(tetrahydropyran-2-yl)-d-xylofuranose, derived from 9 by reduction, with sulfur dioxide in water gave 11. Hydrogenation of 6 and subsequent acetylation yielded 3-acetamido-4,5-diacetoxy-1-acetyl-xylo-piperidine. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

13.
Three different approaches starting from 1,2-O-isopropylidene-α-d-glucofuranose were tested for the synthesis of daunosamine hydrochloride (24), the sugar constituent of the antitumor antibiotics daunomycin and adriamycin. The third route, affording 24 in ~5% overall yield in 11 steps, constitutes a useful, preparative synthesis, 3,5,6-Tri-O-benzoyl-1,2-O-isopropylidene-α-d-glucofuranose was converted via methyl 2,3-anhydro-β-d-mannofuranoside into methyl 2,3:5,6-dianhydro-α-l-gulofuranoside, the terminal oxirane ring of which was split selectively on reduction with borohydride, to afford methyl 2,3-anhydro-6-deoxy-α-l-gulofuranoside (31). Compound 31 was converted into methyl 2,3-anhydro-5-O-benzyl-6-deoxy-α-l-gulofuranoside, which was selectively reduced at C-2 on treatment with lithium aluminum hydride, affording methyl 5-O-benzyl-2,6-dideoxy-α-l-xylo-hexofuranoside. Subsequent mesylation, and replacement of the mesoloxy group by azide, with inversion, afforded methyl 3-azido-5-O-benzyl-2,6-dideoxy-α-l-lyxo-hexofuranoside, which could be converted into either 24 or methyl 3-acetamido-5-O-acetyl-2,3,6-trideoxy-α-l-lyxo-hexofuranoside, which can be used as a starting material for the synthesis of daunomycin analogs.  相似文献   

14.
Heating of 2,3,5-tri-O-methyl-4-O-p-tolylsulfonyl-D-ribose diethyl dithioacetal and dibenzyl dithioacetal in aqueous pyridine gave 4-S-ethyl-2,3,5-tri-O-methyl-4-thio-l-lyxose and benzyl 2,3,5-tri-O-methyl-α-1,4-dithio-l-lyxofuranoside, respectively. Similar rearrangements to the 4-thiofuranoside were observed with 2,3,5-tri-O-methyl-4-O-p-tolylsulfonyl-D-xylose and -D-lyxose dibenzyl dithioacetals. 2,3,4-Tri-O-methyl- 5-O-p-tolylsulfonyl-D-ribose or -D-xylose dibenzyl dithioacetal, however, gave upon heating with sodium iodide in acetone 2,5-anhydro-3,4-di-O-methyl-D-ribose or -D-xylose dibenzyl dithioacetal, respectively.  相似文献   

15.
《Carbohydrate research》1986,148(2):209-219
Epoxidation of trans- and cis-1,3,4-trideoxy-5,6-O-isopropylidene-d-glycero-hex-3-enulose (2) by alkaline hydrogen peroxide gave a mixture of 3,4-anhydro-1-deoxy-5,6-O-isopropylidene-d-arabino- and -d-xylo-hexulose that was resolved by chromatography. Epoxidation of 2 with 3-chloroperbenzoic acid gave (1S)-1-acetoxy-1,2-anhydro-3,4-O-isopropylidene-d-erythrose hydrate and (1R)-1-acetoxy-1,2-anhydro-3,4-O-isopropylidene-d-threose hydrate. Reduction of 2 followed by epoxidation and oxidation gave the corresponding epoxides with the d-ribo and d-lyxo configurations. Structures and configurations of the above compounds were established on the basis of their analytical and spectroscopic data, and by chemical transformations.  相似文献   

16.
Benzoylation of β-maltose monohydrate (2) with 10 mol. equiv. of benzoyl chloride in pyridine at ?40° gave 1,2,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzoyl-α-D-glucopyranosyl)-β-D-glucopyranose (5) in 87% yield, without the need for column chromatography. Similarly, benzoylation of 2 with 8 mol. equiv. of reagent afforded the octabenzoate 5, and the 1,2,6,2′,3′,6′-hexabenzoate 11 in 3%, 79%, and 12% yield, respectively. Methyl 2,6,2′,3′,4′,6′-hexa-O-benzoyl-β-maltoside (10) was directly isolated as a crystalline monoethanolate in 83% yield, from the reaction mixture obtained by the benzoylation of methyl β-maltoside monohydrate (8) with 8.9 mol. equiv. of reagent. Benzoylation of 8 with 7 mol. equiv. of reagent produced 10 and the 2,6,2′,3′,6′-pentabenzoate 16 in 71% and 23% yield, respectively. The order of reactivity of the hydroxyl groups in methyl 4′,6′-O-benzylidene-β-maltoside towards benzoylation is HO-2, HO-6>HO-2′ ≈ HO-3′>HO-3. Benzoylation of methyl β-cellobioside (33) with 7.9 mol. equiv. of reagent gave the heptabenzoate and the 2,6,2′,3′,4′,6′-hexabenzoate 36 in 56% and 27% yield, respectively. Compounds 5, 16, and 36 were transformed into 4-O-α-D-glucopyranosyl-D-allopyranose, methyl 4-O-α-D-galactopyranosyl-β-D-allopyranoside, and methyl 4-O-β-D-glucopyranosyl-β-D-allopyranoside, respectively, by sequential sulfonylation, nucleophilic displacement, and O-debenzoylation.  相似文献   

17.
Partial p-nitrobenzoylation of methyl (methyl 2-O-methyl-α-d-galactopyranosid)uronate (1) gave the 3-p-nitrobenzoate 2 in good yield. Treatment of 2 or methyl (methyl 2,3-di-O-benzoyl-α-d-galactopyranosid)uronate (11) with diazomethane-BF3-etherate gave, in addition to the expected 4-methyl ethers, by-products resulting from lengthening of the carbon chain. The by-products were formulated as derivatives of methyl 4,7-anhydro-α-d-galacto-heptopyranosid-6-ulose dimethy acetal on the basis of p.m.r. and i.r. spectral data, by analysis of their mass-spectral fragmentation pattern, and by chemical transformations.  相似文献   

18.
A new, four-step synthesis of 2,5:3,6-dianhydro-1-deoxy-d-glucitol 16 was worked out, starting from 1,6-dibromo-1,6-dideoxy-d-mannitol. Compound 16 was converted into different 4-O-acyl derivatives, the 3,6-anhydro rings of which where opened with hydrogen bromide, yielding the corresponding 6-bromo compounds. These were converted, via the 6-azides, into the 6-(dimethylamino) derivatives, the sulfonic esters of which gave, on treatment with base, the 2,5:3,4-dianhydro-d-allitol and -d-galactitol derivatives. These were converted with methyl iodide into the corresponding quaternary salts. On biological testing, only the d-allitol derivative showed weak, muscarine-like activity.  相似文献   

19.
The 4-O-benzoyl (15a) 4-O-p-nitrobenzoyl (15b) derivatives of 2,3, 6-tri-O-benzyl-1-thio-d-galactopyranose were synthesized from allyl 2,6-di-O-benzyl-α-d-galactopyranoside (1). In the first stage of the synthesis the 3-position of 1 was benzylated by an indirect route, and also by the direct reaction (preferred) of benzyl bromide with the 3,4-O-dibutylstannylene intermediate 7. The product 6 was sequentially isomerized (allyl → 1-propenyl), acylated at the 4-position, and hydrolyzed. The free sultars 11a and 11b were converted into the thio sugars by a standard sequence involving formation of the glycosyl halides 13a and 13b and the reaction of these with appropriate sulfur nucleophiles. A third derivative (29) of 2,3,6-tri-O-benzyl-1-thio-d-galactopyranose, having a 4-O-allyl protecting group, was similarly made from the corresponding normal sugar 25. The key intermediate 22, precursor to 25, was prepared by two routes from methyl 2,3,6-tri-O-benzoyl-α-d-galactopyranoside (17).  相似文献   

20.
Reaction of methyl 4′,6′-di-O-mesyl-β-lactoside pentabenzoate (8), synthesised via the 4′,6′-O-benzylidene derivative (6), with sodium azide in hexamethylphosphoric triamide gave three products. In addition to the required 4′,6′-diazidocellobioside (9), an elimination product, methyl 4-O-(6-azido-2,3-di-O-benzoyl-4,6-dideoxy-α-L-threo-hex-4-enopyranosyl)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside (12), and an unexpected product of interglycosidic cleavage, methyl 2,3,6-tri-O-benzoyl-β-D-glucopyranoside (13), were formed. The origin of the latter product is discussed. The diazide 9 was converted into 4′,6′-diacetamido-4′,6′-dideoxycellobiose hexa-acetate (16) by sequential debenzoylation, catalytic reduction, acetylation, and acetolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号