首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An NADP(+)-dependent alcohol dehydrogenase was found in Euglena gracilis Z grown on 1-hexanol, while it was detected at low activity in cells grown on ethanol or glucose as a carbon source, indicating that the enzyme is induced by the addition of 1-hexanol into the medium as a carbon source. This enzyme was extremely unstable, even at 4 degrees C, unless 20% ethylene glycol was added. The optimal pH was 8.8-9.0 for oxidation reaction. The apparent K(m) values for 1-hexanol and NADP(+) were found to be 6.79 mM and 46.7 microM for this enzyme, respectively. The substrate specificity of this enzyme was very different from that of already purified NAD(+)-specific ethanol dehydrogenase by showing the highest activity with 1-hexanol as a substrate, followed by 1-pentanol and 1-butanol, and there was very little activity with ethanol and 1-propanol. This enzyme was active towards the primary alcohols but not secondary alcohols. Accordingly, since the NADP(+)-specific enzyme was separated on DEAE cellulose column, Euglena was confirmed to contain a novel enzyme to be active towards middle and long-chain length of fatty alcohols.  相似文献   

2.
Alcohol dehydrogenase has been purified from the cell-free preparation of Thermoanaerobium brockii to homogeneity, employing combined DEAE, Sephadex, and affinity chromatographic procedures. The enzyme is tetrameric having subunit molecular weight of 40.4 x 10(3). The purified alcohol dehydrogenase is capable of utilizing either NAD+ or NADP+ to oxidize primary and secondary alcohols, although it prefers NADP+ as the coenzyme and secondary alcohols as substrates. Inactivation of the enzymic activity by sensitized photooxidation and carboxymethylation implicates the presence of catalytically important histidine and cysteine residues. Kinetic studies indicate that Thermoanaerobium alcohol dehydrogenase catalyzes NADP(+)-linked oxidations of secondary alcohols by an ordered bi-bi mechanism with NADP+ as the leading reactant. The preference of the Thermoanaerobium enzyme for NADP+ is correlated with its low dissociation constants (KA and KiA) and high turnover rate (V/Et). The corresponding kinetic parameters also contribute to the preference of this enzyme for secondary alcohols.  相似文献   

3.
By protein engineering we have investigated changes to two amino acid residues (Trp93 and Ser48) in the substrate pocket of yeast alcohol dehydrogenase 1. Upon changing Thr48 to serine we produced an enzyme which has markedly greater activity towards aliphatic alcohols with chain length up to 8, together with a general increase in catalytic activity (V/K). Changes at position 93 were less pronounced, with the Phe enzyme being more active than the parent towards the range of alcohols but with the alanine enzyme showing very little difference from the wild-type. Enzymes with the double changes at 48 and 93 showed increased activity towards alcohols with 3-8 carbons but the increases were not additive over the single changes. The enzymes with changes at the two positions would metabolize both stereoisomers of 2-octanol whereas the parent ADH would attack only one of them. None of the engineered enzymes would attack cyclohexanol or aromatic alcohols. The results are in general agreement with the prediction that reducing the size of amino acids in the substrate pocket would enhance the ability to oxidize alcohols larger than ethanol.  相似文献   

4.
A new form of alcohol dehydrogenase, designated mu-alcohol dehydrogenase, was identified in surgical human stomach mucosa by isoelectric focusing and kinetic determinations. This enzyme was anodic to class I (alpha, beta, gamma) and class II (pi) alcohol dehydrogenases on agarose isoelectric focusing gels. The partially purified mu-alcohol dehydrogenase, specifically using NAD+ as cofactor, catalyzed the oxidation of aliphatic and aromatic alcohols with long chain alcohols being better substrates, indicating a barrel-shape hydrophobic binding pocket for substrate. mu-Alcohol dehydrogenase stood out in high Km values for both ethanol (18 mM) and NAD+ (340 microM) as well as in high Ki value (320 microM) for 4-methylpyrazole, a competitive inhibitor for ethanol. mu-Alcohol dehydrogenase may account for up to 50% of total stomach alcohol dehydrogenase activity and appeared to play a significant role in first-pass metabolism of ethanol in human.  相似文献   

5.
As long-chain alcohol dehydrogenases are not easily available and seldom reported enzymes, it is worthwhile to appraise the potential of well known dehydrogenases, like horse liver alcohol dehydrogenases (HLAD), for the oxidation of long-chain aliphatic alcohols. Oxidation of docosanol (C22) and tetracosanol (C24) is of technological relevance within an industrial platform for the fractionation and upgrading of tall-oil from the Kraft pulping process. Results are presented on the characterization of free and immobilized HLAD with respect to their potential for oxidizing long-chain aliphatic alcohols. Enzyme activity with respect to chain length and pH is presented. Activity for both free and immobilized HLAD increased with pH up to 8.8, but behavior with respect to chain length varied from one biocatalyst to the other. Even though both biocatalysts were less active towards very long-chain aliphatic alcohols, immobilized HLAD had an activity on docosanol and tetracosanol higher than 50% of the value obtained with ethanol, butanol and octanol, which is encouraging and has not been previously reported. Investigation on thermophilic sources and further immobilization strategies are underway to obtain more active and stable catalysts amenable for working at high temperatures which is quite relevant in this case due to the poor solubility of substrates.  相似文献   

6.
Two alcohol dehydrogenases (alcohol: NAD oxidoreductase, EC 1.1.1.1 and alcohol: NADP oxidoreductase, EC 1.1.1.2) were partially purified from extracts of strawberry seeds by conventional methods. Some of physical, chemical and kinetic properties of the enzymes are described. On the basis of gel filtration, the molecular weights were estimated to be approximately 78,000 for NAD-dependent enzyme and 82,000 for NADP-dependent enzyme. Thiol-reacting compounds inhibited both enzymes. NAD-dependent alcohol dehydrogenase reacted only with aliphatic alcohols and aldehydes, while aromatic and terpene alcohols and aldehydes were the better substrates for NADP-dependent alcohol dehydrogenase than aliphatic alcohols and aldehydes.  相似文献   

7.
An alcohol dehydrogenase (ADH) was purified to electrophoretic homogeneity from an extremely thermophilic bacterium, Thermomicrobium roseum. The native enzyme was found to be a homo-dimer of 43-kDa subunits. The pI of the enzyme was determined to be 6.2, while its optimum pH is 10.0. The enzyme oxidized mainly primary aliphatic alcohols and exhibited high substrate specificity towards ethanol, n-propanol and crotyl alcohol. The highest reaction rate was observed when ethanol was used as substrate and the K(m) value of the enzyme for ethanol was 24.2 mM. Pyrazole notably inhibited the enzymatic activity. The enzyme had the optimal temperature of 70 degrees C and was highly stable against high temperature.  相似文献   

8.
The constitutive NADP+-dependent alcohol dehydrogenase from Acinetobacter calcoaceticus can be accumulated about 50 fold in 3 purification steps. The end-product shows in the analytical polyacrylamide gel electrophoresis only one active enzyme band. The molecular weight of the enzyme was determined to be 235,000 by gel chromatography on Sephadex G 200, the smallest subunit shows a molecular weight of 61 000 on SDS electrophoresis. The isoelectric point is at 5.84. The KM values determined with primary aliphatic alcohols diminish in the range of the homologous order (C2--C10) with growing chain length. The KM value for hexanal is about 20 fold less than that for 1-hexanol.  相似文献   

9.
A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex.  相似文献   

10.
We have compared hepatic alcohol dehydrogenase activities in chick, rat and human liver with the major alcohols in commercial alcoholic beverages. 1. Chick and rat hepatic alcohol dehydrogenase was greater when assayed at a physiological pH in buffer containing chloride ions, as compared with the activity in pyrophosphate buffer at alkaline pH. 2. In contrast to reports of instability of ADH to freezing, we found the enzyme from all three species stable to freezing in 0.25 M sucrose. 3. Rat liver enzymatic activity was unstable in the presence of substrate, where as that of chick and human was not. 4. For all three species, the Km of hepatic ADH for substrate decreased with increasing chain length of alcohols. In both chick and human samples, the Vmax values for the higher chain alcohols were similar to that with ethanol, while in rat samples, ADH activity was dramatically lower with the higher chain alcohols compared to ethanol.  相似文献   

11.
Enzymes of the short chain and medium chain dehydrogenase/reductase families have been demonstrated to participate in the oxidoreduction of ethanol and retinoids. Mammals and amphibians contain, in the upper digestive tract mucosa, alcohol dehydrogenases of the medium chain dehydrogenase/reductase family, active with ethanol and retinol. In the present work, we searched for a similar enzyme in an avian species (Gallus domesticus). We found that chicken does not contain the homologous enzyme from the medium chain dehydrogenase/reductase family but an oxidoreductase from the aldo-keto reductase family, with retinal reductase and alcohol dehydrogenase activities. The amino acid sequence shows 66-69% residue identity with the aldose reductase and aldose reductase-like enzymes. Chicken aldo-keto reductase is a monomer of M(r) 36,000 expressed in eye, tongue, and esophagus. The enzyme can oxidize aliphatic alcohols, such as ethanol, and it is very efficient in all-trans- and 9-cis-retinal reduction (k(cat)/K(m) = 5,300 and 32,000 mm(-1).min(-1), respectively). This finding represents the inclusion of the aldo-keto reductase family, with the (alpha/beta)(8) barrel structure, into the scenario of retinoid metabolism and, therefore, of the regulation of vertebrate development and tissue differentiation.  相似文献   

12.
Thermoanaerobacter ethanolicus (ATCC 31550) has primary and secondary alcohol dehydrogenases. The two enzymes were purified to homogeneity as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The apparent Mrs of the primary and secondary alcohol dehydrogenases are 184,000 and 172,000, respectively. Both enzymes have high thermostability. They are tetrameric with apparently identical subunits and contain from 3.2 to 5.5 atoms of Zn per subunit. The two dehydrogenases are NADP dependent and reversibly convert ethanol and 1-propanol to the respective aldehydes. The Vm values with ethanol as a substrate are 45.6 μmol/min per mg for the primary alcohol dehydrogenase and 13 μmol/min per mg for the secondary alcohol dehydrogenase at pH 8.9 and 60°C. The primary enzyme oxidizes primary alcohols, including up to heptanol, at rates similar to that of ethanol. It is inactive with secondary alcohols. The secondary enzyme is inactive with 1-pentanol or longer chain alcohols. Its best substrate is 2-propanol, which is oxidized 15 times faster than ethanol. The secondary alcohol dehydrogenase is formed early during the growth cycle. It is stimulated by pyruvate and has a low Km for acetaldehyde (44.8 mM) in comparison to that of the primary alcohol dehydrogenase (210 mM). The latter enzyme is formed late in the growth cycle. It is postulated that the secondary alcohol dehydrogenase is largely responsible for the formation of ethanol in fermentations of carbohydrates by T. ethanolicus.  相似文献   

13.
Ying X  Ma K 《Journal of bacteriology》2011,193(12):3009-3019
An alcohol dehydrogenase (ADH) from hyperthermophilic archaeon Thermococcus guaymasensis was purified to homogeneity and was found to be a homotetramer with a subunit size of 40 ± 1 kDa. The gene encoding the enzyme was cloned and sequenced; this gene had 1,095 bp, corresponding to 365 amino acids, and showed high sequence homology to zinc-containing ADHs and l-threonine dehydrogenases with binding motifs of catalytic zinc and NADP(+). Metal analyses revealed that this NADP(+)-dependent enzyme contained 0.9 ± 0.03 g-atoms of zinc per subunit. It was a primary-secondary ADH and exhibited a substrate preference for secondary alcohols and corresponding ketones. Particularly, the enzyme with unusual stereoselectivity catalyzed an anti-Prelog reduction of racemic (R/S)-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol. The optimal pH values for the oxidation and formation of alcohols were 10.5 and 7.5, respectively. Besides being hyperthermostable, the enzyme activity increased as the temperature was elevated up to 95°C. The enzyme was active in the presence of methanol up to 40% (vol/vol) in the assay mixture. The reduction of ketones underwent high efficiency by coupling with excess isopropanol to regenerate NADPH. The kinetic parameters of the enzyme showed that the apparent K(m) values and catalytic efficiency for NADPH were 40 times lower and 5 times higher than those for NADP(+), respectively. The physiological roles of the enzyme were proposed to be in the formation of alcohols such as ethanol or acetoin concomitant to the NADPH oxidation.  相似文献   

14.
Class IV alcohol dehydrogenase shows a deletion at position 117 with respect to class I enzymes, which typically have a Gly residue. In class I structures, Gly117 is part of a loop (residues 114–120) that is highly variable within the alcohol dehydrogenase family. A mutant human class IV enzyme was engineered in which a Gly residue was inserted at position 117 (G117ins). Its kinetic properties, regarding ethanol and primary aliphatic alcohols, secondary alcohols and pH profiles, were determined and compared with the results obtained in previous studies in which the size of the 114–120 loop was modified. For the enzymes considered, a smaller loop was associated with a lower catalytic efficiency towards short-chain alcohols (ethanol and propanol) and secondary alcohols, as well as with a higher Km for ethanol at pH 7.5 than at pH 10.0. The effect can be rationalized in terms of a more open, solvent-accessible active site in class IV alcohol dehydrogenase, which disfavors productive binding of ethanol and short-chain alcohols, specially at physiological pH.  相似文献   

15.
Class IV alcohol dehydrogenase shows a deletion at position 117 with respect to class I enzymes, which typically have a Gly residue. In class I structures, Gly117 is part of a loop (residues 114-120) that is highly variable within the alcohol dehydrogenase family. A mutant human class IV enzyme was engineered in which a Gly residue was inserted at position 117 (G117ins). Its kinetic properties, regarding ethanol and primary aliphatic alcohols, secondary alcohols and pH profiles, were determined and compared with the results obtained in previous studies in which the size of the 114-120 loop was modified. For the enzymes considered, a smaller loop was associated with a lower catalytic efficiency towards short-chain alcohols (ethanol and propanol) and secondary alcohols, as well as with a higher K(m) for ethanol at pH 7.5 than at pH 10.0. The effect can be rationalized in terms of a more open, solvent-accessible active site in class IV alcohol dehydrogenase, which disfavors productive binding of ethanol and short-chain alcohols, specially at physiological pH.  相似文献   

16.
Ethanol oxidation by the soluble fraction of a rat hepatoma was compared to that of the liver. Ethanol oxidation by the hepatoma was NAD+-dependent and sensitive to pyrazole, suggesting the presence of alcohol dehydrogenase. At low concentrations of ethanol (10.8 mm) the alcohol dehydrogenase activities of hepatoma and liver supernatant fractions were comparable. When the concentration of ethanol was raised to 108 mm, the activity of the liver enzyme decreased, whereas the activity in hepatoma supernatant fractions was strikingly elevated. m-Nitrobenzaldehyde-reducing activity was also conspicuously higher in hepatoma supernatant fractions. By contrast the ability to metabolize steroids and cyclohexanone was less than that in supernatant fractions of the liver.Electrophoresis of the liver supernatant fractions on ionagar at pH 7.0 revealed only one component that oxidized ethanol. On the other hand, hepatoma supernatant fractions contained two components with alcohol dehydrogenase activity; one with the same electrophoretic mobility as the liver enzyme, the other showing a slower rate of migration. The latter component, which is absent in the liver, is referred to as hepatoma alcohol dehydrogenase. By electrophoresis on starch gels at pH 8.5, it could be demonstrated that the liver and hepatoma enzymes moved in opposite directions.The liver and hepatoma enzymes differ in electrophoretic mobility, susceptibility to heat treatment, pH activity optimum and some catalytic properties. The substrate specificity of the hepatoma enzyme is narrower than that of liver alcohol dehydrogenase; cyclohexanone or 3β-hydroxysteroids of A/B cis configuration and the corresponding 3-ketones are not substrates for the hepatoma enzyme. The overall substrate specificity characteristics are, however, similar to those of the liver enzyme in that the effectiveness of substrates increases with an increase in chain length and introduction of unsaturation or an aromatic group. Both liver and hepatoma alcohol dehydrogenase cross-react with antibody to horse liver alcohol dehydrogenase EE. The Michaelis constant for ethanol with the hepatoma enzyme is 223 mm, compared to 0.3 mm for liver alcohol dehydrogenase; at 1.0 m ethanol the hepatoma enzyme is not fully saturated with substrate. The Michaelis constant for 2-hexene-1-ol is 0.3 mm, indicating that the hepatoma enzyme is better suited for dehydrogenation of longer chain alcohols. Stomach alcohol dehydrogenase has kinetic properties comparable to those of the hepatoma enzyme, as well as similar electrophoretic mobility. The hepatoma enzyme can be detected in the serum of rats bearing hepatomas.  相似文献   

17.
Purified Drosophila lebanonensis alcohol dehydrogenase (Adh) revealed one enzymically active zone in starch gel electrophoresis at pH 8.5. This zone was located on the cathode side of the origin. Incubation of D. lebanonensis Adh with NAD+ and acetone altered the electrophoretic pattern to more anodal migrating zones. D. lebanonensis Adh has an Mr of 56,000, a subunit of Mr of 28 000 and is a dimer with two active sites per enzyme molecule. This agrees with a polypeptide chain of 247 residues. Metal analysis by plasma emission spectroscopy indicated that this insect alcohol dehydrogenase is not a metalloenzyme. In studies of the substrate specificity and stereospecificity, D. lebanonensis Adh was more active with secondary than with primary alcohols. Both alkyl groups in the secondary alcohols interacted hydrophobically with the alcohol binding region of the active site. The catalytic centre activity for propan-2-ol was 7.4 s-1 and the maximum velocity of most secondary alcohols was approximately the same and indicative of rate-limiting enzyme-coenzyme dissociation. For primary alcohols the maximum velocity varied and was much lower than for secondary alcohols. The catalytic centre activity for ethanol was 2.4 s-1. With [2H6]ethanol a primary kinetic 2H isotope effect of 2.8 indicated that the interconversion of the ternary complexes was rate-limiting. Pyrazole was an ethanol-competitive inhibitor of the enzyme. The difference spectra of the enzyme-NAD+-pyrazole complex gave an absorption peak at 305 nm with epsilon 305 14.5 X 10(3) M-1 X cm-1. Concentrations and amounts of active enzyme can thus be determined. A kinetic rate assay to determine the concentration of enzyme active sites is also presented. This has been developed from active site concentrations established by titration at 305 nm of the enzyme and pyrazole with NAD+. In contrast with the amino acid composition, which indicated that D. lebanonensis Adh and the D. melanogaster alleloenzymes were not closely related, the enzymological studies showed that their active sites were similar although differing markedly from those of zinc alcohol dehydrogenases.  相似文献   

18.
Alcohol dehydrogenase [EC 1.1.1.1] was purified to homogeneity from rabbit liver by water extraction, DEAE-cellulose treatment, affinity chromatography on 5'-AMP-Sepharose and gel filtration on Sephadex G-150 using dithiothreitol as a stabilizer. The purified enzyme has an estimated molecular weight of 72,000 and consists of two subunits with a molecular weight of about 36,000 each. The enzyme contains 4 g-atoms of zinc and 18 sulfhydryl groups per mol of protein and exhibits maximal activity at pH 10.8, with a second maximum at pH 7.5. The apparent Km values for ethanol and NAD+ are 0.45 mM and 53.19 microM, respectively, at pH 10.8 and 3.33 mM and 6.94 microM, respectively, at pH 7.5. The enzyme oxidizes ethanol most readily among the aliphatic alcohols studied and has very low substrate specificity for methanol. Among steroid alcohols, 5 beta-androstan-3 beta-ol-17-one serves as a substrate for the enzyme. Pyrazole and 4-methylpyrazole (which are well known alcohol dehydrogenase inhibitors), sulfhydryl reagents, heavy metal ions and metal-chelating agents inactivate the enzyme.  相似文献   

19.
In this study, serine protease (subtilisin Carlsberg) was immobilized on pentynyl dextran (PyD, O–alkynyl ether of dextran, 1) and used for the transesterification of N-acetyl-l-phenylalanine ethyl ester (2) with different aliphatic (1-propanol, 1-butanol, 1-pentanol, 1-hexanol) and aromatic (benzyl alcohol, 2-phenyl ethanol, 4-phenyl-1-butanol) alcohols in tetrahydrofuran (THF). The effect of carbon chain length in aliphatic and aromatic alcohols on initial and average transesterification rate, transesterification activity of immobilized enzyme and yield of the reaction under selected reaction conditions was investigated. The transesterification reactivity of the enzyme and yield of the reaction increased as the chain length of the alcohols decreased. Furthermore, almost no change in yield was observed when the immobilized enzyme was repeatedly used for selected alcohols over six cycles. Intrinsic fluorescence analysis showed that the catalytic activity of the immobilized enzyme in THF was maintained due to retention of the tertiary structure of the enzyme after immobilization on PyD (1).  相似文献   

20.
A novel secondary alcohol dehydrogenase has been isolated from Tritrichomonas foetus, the protozoan parasite which is responsible for bovine trichomonal abortion. The enzyme has been obtained in apparently homogeneous form after a 120-fold purification from cell homogenates, thus indicating that this activity constitutes an unusually high 1% of the total cytosolic protein. The native Mr = 115,000, determined by polyacrylamide gel electrophoresis. Mobility on sodium dodecyl sulfate gels suggests that the enzyme is composed of 6-8 subunits, identical as to molecular size (Mr = 17,000). The enzyme catalyzes the reversible oxidation of 2-propanol to acetone, using NADP+ (and not NAD+) as the redox-active co-substrate. Other small secondary alcohols, such as 2-butanol, 2- and 3-pentanol, cyclobutanol, and cyclopentanol are substrates, as are the corresponding ketones of these alcohols. Primary alcohols, such as ethanol and 1-propanol, are oxidized at rates less than 5% of that observed for 2-propanol. Product inhibition studies demonstrate an ordered kinetic mechanism, wherein the co-substrate (NADP+/NADPH) binds to the enzyme prior to binding of the substrate (alcohol/ketone).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号