首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
6-N-[3-3H]Trimethyl-dl-lysine was synthesized from 6-N-acetyl-l-lysine by the following chemical scheme: 6-N-acetyl-l-lysine → 2-keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid oxime → 6-N-[3-3H]acetyl-dl-lysine → dl-[3-3H]lysine → 2-N-[3-3H]formyl-dl-lysine → 2-[3-3H]formyl-6-N-trimethyl-dl-lysine → 6-N-[3-3H]trimethyl-dl-lysine. Using a 70% ammonium sulfate fraction obtained from a high-speed rat kidney supernatant, the cosubstrate and cofactor requirements for 6-N-trimethyl-l-lysine hydroxylase activity as measured by tritium release from 6-N-[3-3H]trimethyl-dl-lysine were: α-ketoglutarate, ferrous ions, l-ascorbate, and oxygen, with added catalase showing a slight but distinct stimulatory effect. On incubation with the crude rat kidney preparation, the release of tritium from 6-N-[3-3H]trimethyl-dl-lysine was linear with both time of incubation and protein concentration. Hydroxylation of 6-N-trimethyl-l-lysine, as measured by tritium release from the labeled substrate, was examined in rat kidney, heart, liver, and skeletal muscle tissues, and found to be most active in the kidney.  相似文献   

2.
Three covalent anthocyanin–flavonol complexes (pigments 1–3) were extracted from the violet-blue flower of Allium ‘Blue Perfume’ with 5% acetic acid-MeOH solution, in which pigment 1 was the dominant pigment. These three pigments are based on delphinidin 3-glucoside as their deacylanthocyanin and were acylated with malonyl kaempferol 3-sophoroside-7-glucosiduronic acid or malonyl-kaempferol 3-p-coumaroyl-tetraglycoside-7-glucosiduronic acid in addition to acylation with acetic acid.By spectroscopic and chemical methods, the structures of these three pigments 1–3 were determined to be: pigment 1, (6I-O-(delphinidin 3-O-(3I-O-(acetyl)-β-glucopyranosideI)))(2VI-O-(kaempferol 3-O-(2II-O-(3III-O-(β-glucopyranosylV)-β-glucopyranosylIII)-4II-O-(trans-p-coumaroyl)-6II-O-(β-glucopyranosylIV)-β-glucopyranosideII)-7-O-(β-glucosiduronic acidVI))) malonate; pigment 2, (6I-O-(delphinidin 3-O-(3I-O-(acetyl)-β-glucopyranosideI)))(2VI-O-(kaempferol 3-O-(2II-O-β-glucopyranosylIII)-β-glucopyranosideII)-7-O-(β-glucosiduronic acidVI))); and pigment 3, (6I-O-(delphinidin 3-O-(3I-O-(acetyl)-β-glucopyranosideI)))(2VI-O-(kaempferol 3-O-(2II-O-(3III-O-(β-glucopyranosylV)-β-glucopyranosylIII)-4II-O-(cis-p-coumaroyl)-6II-O-(β-glucopyranosylIV)-β-glucopyranosideII)-7-O-(β-glucosiduronic acidVI))) malonate.The structure of pigment 2 was analogous to that of a covalent anthocyanin–flavonol complex isolated from Allium schoenoprasum where delphinidin was observed in place of cyanidin. The three covalent anthocyanin–flavonol complexes (pigment 1–3) had a stable violet-blue color with three characteristic absorption maxima at 540, 547 and 618 nm in pH 5–6 buffer solution. From circular dichroism measurement of pigment 1 in the pH 6.0 buffer solution, cotton effects were observed at 533 (+), 604 (−) and 638 (−) nm. Based on these results, these covalent anthocyanin–flavonol complexes were presumed to maintain a stable intramolecular association between delphinidin and kaempferol units closely related to that observed between anthocyanin and hydroxycinnamic acid residues in polyacylated anthocyanins. Additionally, an acylated kaempferol glycoside (pigment 4) was isolated from the same flower extract, and its structure was determined to be kaempferol 3-O-sophoroside-7-O-(3-O-(malonyl)-β-glucopyranosiduronic acid).  相似文献   

3.
The biosynthesis of the morphinandienone alkaloids norsinoacutine, sinoacutine and flavinantine has been studied using 1-3 H-sinoacutine, 1-3H-norsinoacutine, 1-3H-norsinoacutinols, l-[S-methyl-14C]-methionine, glycine-2-14C, 1-3H-8,14-dihydronorsalutaridine, 1-3 H-8,14-dihydrosalutaridine, 1-3H-sinomenine, 1-3H-isosinomenine, (±)-[2-14C]phenylalanine, (±)-[N-methyl-14C]orientaline and (±)-[N-methyl-14C]reticuline.  相似文献   

4.
The metabolism of 3H-androstenedione (Δ4 -A) and 3H-estriol (E3) was studied in 12 human breast tumors. Part of each tumor was analyzed for estrogen receptor content. Aliquots of tumor homogenates were incubated for 2 hr separately with 3H-δ4-A and 3H-E3 in the presence of appropriate cofactors. No distinct differences emerged in the profiles of the unconjugated metabolites of 3H-δ4-A, the major compounds in the approximate order of descendence being androsterone, androstanedione, testosterone, 5α-androstane-3α,17β-diol, epiandrosterone, and dihydrotestosterone. One tumor homogenate from an infiltrating lobular carcinoma converted 3H-Δ4-A to glucosiduronate metabolites (11%), of which androsterone, 6.4%; testosterone, 1.6%; and androstanediol, 0.6% predominated. The homogenate of this tumor and two other tumors converted 3H-E3 to 3H-E3-3S. Conversions of E3 to E3-3S In the other tumor homogenates were less than 0.6%. No correlation between receptor content and the capability of the tumor to conjugate Δ4-A or E3 evolved. However, correlations between steroid hormone metabolism and tumor histopathology may exist.  相似文献   

5.
Excised, opening inflorescences of Calendula officinalis incorporated (3RS, 5R)- and (3RS, 5S)-[2-14C,5-3H1]mevalonates into the carotenoid fraction. The 14C:3H ratios of lutein isolated from these tissues showed the hydrogen atom at C-3 of the β-ring is derived from the 5-pro-S position of mevalonate, while that at C-3 of the ε-ring is derived from the 5-pro-R position of mevalonate. Oxidation of lutein to monoketolutein showed that both hydrogen atoms at the C-15,15′ central double bond are derived from the 5-pro-R position of mevalonate.  相似文献   

6.
Gypsogenin (L1; 3-hydroxy-23-oxoolean-12-en-28-oic acid), a natural saponin, was isolated from the boiling water extract of Gypsophila arrostii roots. In addition, the derivatives gypsogenin thiosemicarbazone (L2; 23-[(aminocarbonothioyl)hydrazono]-3-hydroxolean-12-en-28-oic acid) and gypsogenin thiosemicarbazone glyoxime (L3H2; (3β)-3-hydroxy-23-[({[(1Z,2E)-N-hydroxy-2-(hydroxyimino)ethanimidoyl]amino}carbonothioyl)hydrazono] olean-12-en-28-oic acid) as well as the Cu(II) and Co(II) complexes of L3H2 were prepared. The structures were established on NMR analysis (1H, 13C NMR, HMBC, HMQC, and NOESY), FT-IR and completed by analysis of LC/MS. Furthermore, the antiproliferative effects of the Co(II) and Cu(II) complexes of the gypsogenin derivatives were assayed in human promyelocytic leukemia (HL 60) cells. These complexes were found to be potent anticancer agents with concentrations that inhibited 50% of proliferation (IpC50) between 5 μM and 40 μM. Cell death was distinguished by HO/PI double staining. The Co(II) complex of L3H2 has shown approximately %50 apoptotic effect at 10 μM concentration. Paclitaxel has been used as positive control.  相似文献   

7.
Based on a number of experiments it is concluded that the fluorescein labeled β-heptapeptide fluoresceinyl-NH-CS-(S)-β3hAla-(S)-β3hArg-(R)-β3hLeu-(S)-β3hPhe-(S)-β3hAla-(S)-β3hAla-(S)-β3hLys-OH translocates across lipid vesicle bilayers formed from DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine). The conclusion is based on the following observations: (i) addition of the peptide to the vicinity of micrometer-sized giant vesicles leads to an accumulation of the peptide inside the vesicles; (ii) if the peptide is injected inside individual giant vesicles, it is released from the vesicles in a time dependent manner; (iii) if the peptide is encapsulated within sub-micrometer-sized large unilamellar vesicles, it is released from the vesicles as a function of time; (iv) if the peptide is submitted to immobilized liposome chromatography, the peptide is retained by the immobilized DOPC vesicles. Furthermore, the addition of the peptide to calcein-containing DOPC vesicles does not lead to significant calcein leakage and vesicle fusion is not observed. The finding that derivatives of the β-heptapeptide (S)-β3hAla-(S)-β3hArg-(R)-β3hLeu-(S)-β3hPhe-(S)-β3hAla-(S)-β3hAla-(S)-β3hLys-OH can translocate across phospholipid bilayers is supported by independent measurements using Tb3+-containing large unilamellar vesicles prepared from egg phosphatidylcholine and wheat germ phosphatidylinositol (molar ratio of 9:1) and a corresponding peptide that is labeled with dipicolinic acid instead of fluorescein. The experiments show that this dipicolinic acid labeled β-heptapeptide derivative also permeates across phospholipid bilayers. The possible mechanism of the translocation of the particular β-heptapeptide derivatives across the membrane of phospholipid vesicles is discussed within the frame of the current understanding of the permeation of certain oligopeptides across simple phospholipid bilayers.  相似文献   

8.
Illuminated intact pea chloroplasts in the presence of O-acetylserine (OAS) catalysed incorporation of SeO32- and SO32- into selenocysteine and cysteine at rates of ca 0.36 and 6 μmol/mg Chl per hr respectively. Sonicated chloroplasts catalysed SeO32- and SO32- incorporation at ca 3.9 and 32% respectively of the rates of intact chloroplasts. Addition of GSH and NADPH increased the rates to ca 91 and 98% of the intact rates, but SeO32- incorporation under these conditions was essentially light-independent. In the absence of OAS, intact chloroplasts catalysed reduction of SO32- to S2- at rates of ca 5.8 μmol/mg Chl per hr. In the presence of OAS, S2- did not accumulate. Glutathione (GSH) reductase was purified from peas and was inhibited by ZnCl2. This enzyme, in the presence of purified clover cysteine synthase, OAS, GSH and NADPH, catalysed incorporation of SeO32- into selenocysteine (but not SO32- into cysteine). The reaction was inhibited by ZnCl2. Incorporation of SeO32- into selenocysteine by illuminated intact chloroplasts and sonicated chloroplasts (with NADPH and GSH) was also inhibited by ZnCl2 but not by KCN. Conversely, incorporation of SO32- into cysteine was inhibited by KCN but not by ZnCl2. It was concluded that SeO32- and SO32- are reduced in chloroplasts by independent light-requiring mechanisms. It is proposed that SeO32- is reduced by light-coupled GSH reductase and that the Se2- produced is incorporated into selenocysteine by cysteine synthase.  相似文献   

9.
Biosynthetic pathways to p-hydroxybenzoic acid in polar lignin were examined by tracer experiments. High incorporation of radioactivity to the acid was observed when shikimic acid-[1-14C], phenylalanine-[3-14C], trans-cinnamic acid-[3-14C], p-coumaric acid-[3-14C] and p-hydroxybenzoic acid-[COOH-14C] were administered, while incorporation was low from shikimic acid-[COOH-14C], phenylalanine-[1-14C], phenylalanine-[2-14C], tyrosine-[3-14C], benzoic acid-[COOH-14C], sodium acetate-[1-14C] and d-glucose-[U-14C]. Thus p-hydroxybenzoic acid in poplar lignin is formed mainly via the pathway: shikimic acid → phenylalanine → trans-cinnamic acid → p-coumaric acid → p-hydroxybenzoic acid.  相似文献   

10.
Three new flavonol glycosides, nervilifordizins A–C (13), were isolated from the whole plant of Nervilia fordii. Their structures were elucidated as rhamnazin 3-O-β-d-xylopyranosyl-(1→4)-β-d-glucopyranoside (1), rhamnazin 3-O-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside (2) and rhamnazin 3-O-β-d-xylopyranosyl-(1→4)-β-d-glucopyranoside-4′-O-β-d-glucopyranoside (3) on the basis of extensive spectroscopic analysis, including HSQC, HMBC, 1H–1H COSY, and chemical evidences.  相似文献   

11.
The concentration-dependent metabolism of 1-14C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [14C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-14C]20:5n-3 to [3-14C]22:6n-3 was more efficient than that of [1-14C]20:4n-6 to [3-14C]22:5n-6. At low substrate concentration (4 μM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 μM). The conversion of [1-14C]22:5n-3 to [1-14C]22:6n-3 was 1.7 times more efficient than that of [1-14C]22:4n-6 to [1-14C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-14C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-14C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-14C]20:4n-6 or [1-14C]22:4n-6 to [14C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-14C]20:5n-3 and [1-14C]22:5n-3 to [14C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

12.
《Insect Biochemistry》1986,16(1):17-23
The synthesis of [4-14C]cholesta-4,6-dien-3-one and [4-14C]3β-hydroxy-5α-cholestan-6-one is described. Both [4-14C]cholest-4-en-3-one and [4-14C]cholesta-4,6-dien-3-one were not incorporated significantly into ecdysteroids compared to [1α,2α-3H]cholesterol in fifth instar and maturing adult female Schistocerca gregaria. Similarly, [4-14C]3β-hydroxy-5α-cholestan-6-one was not incorporated significantly in the latter system. The results suggest that none of the three 14C-substrates are intermediates in ecdysteroid biosynthesis from cholesterol, although possible complications from permeability barriers cannot be discounted. [4-14C, 7-3H]7-dehydrocholesterol has been synthesized and incorporated into ecdysteroids in adult female Schistocerca gregaria and in Spodoptera littoralis pupae. Although approximately half the tritium was eliminated during ecdysteroid synthesis in S. gregaria, there was essentially complete retention of the tritium in Spodoptera. The results support the direct incorporation of 7-dehydrocholesterol into ecdysteroids and not via cholesterol. A possible explanation for the loss of appreciable tritium in S. gregaria is discussed.  相似文献   

13.
Samples of (3R)- and (3S)-4′hydroxyphenyl[3-2H1, 3-3H]pyruvate were prepared by taking advantage of the known stereospecificity of phenylpyruvate keto-enol isomerase (tautomerase). 4′-Hydroxyphenyl[3-14C]pyruvate was obtained by the action of l-amino acid oxidase on dl-[3-14C]tyrosine, whereas a simple base-catalyzed exchange procedure yielded samples of 4′-hydroxyphenyl[3-3H]- and 4′-hydroxyphenyl[3-2H2]pyruvate. All labeled samples were converted in situ into the corresponding homogentisic acids on 4′-hydroxyphenyl-pyruvate dioxygenase that is known to catalyze the migration of the acetate side chain with retention of configuration. The isolated doubly labeled homogentisic acids were incubated with chloroplasts from Raphanus sativus cv. saxa Treib, and from the lipophilic products a fraction containing inter alia tocopherol, tocoquinone, and plastoquinone was obtained by chromatographic procedures. The incorporation of radioactivity was between 0.5 and 11% based on homogentisate. Reductive acetylation of the quinones yielded crystalline diacetylhydroquinones, which were submitted to Kuhn-Roth degradation. The radioactive acetate samples thus obtained were analyzed for chirality by an enzymatic procedure previously published. (2R)-[2-2H1, 2-3H]Homogentisate gave mainly (S)-acetate, whereas (2S)-[2-2H1, 2-3H]homogentisate was converted mainly into (R)-acetate. It is concluded that the decarboxylation of the side chain occurred with stereochemical retention during the biosynthetic process.  相似文献   

14.
Incubation of mature sweet corn kernels of Zea mays in dilute solutions of 14C-labeled indole-3-acetic acid leads to the formation of 14C-labeled esters of myo-inositol, glucose, and glucans. Utilizing this knowledge it was found that an enzyme preparation from immature sweet corn kernels of Zea mays catalyzed the CoA- and ATP-dependent esterification of indole-3-acetic acid to myo-inositol and glucose. The esters formed were 2-O-(indole-3-acetyl)-myo-inositol, 1-dl-1-O-(indole-3-acetyl)-myo-inositol, di-O-(indole-3-acetyl)-myo-inositol, tri-O-(indole-3-acetyl)-myo-inositol, 2-O-(indole-3-acetyl)-d-glucopyranose, 4-O-(indole-3-acetyl)-d-glucopyranose and 6-O-(indole-3-acetyl)-d-glycopyranose. An assay system was developed for measuring esterification of 14C-labeled indole-3-acetic acid by ammonolysis of the esters followed by isolation and counting the radioactive indole-3-acetamide.  相似文献   

15.
《Carbohydrate research》1987,166(2):219-232
Effective general methods have been developed for the synthesis of 2′-C-methylnucleosides starting from d-glucose and d-ribose. 3-O-benzyl-1,2-O-isopropylidene-3-C-methyl-α-d-allofuranose was prepared in 5 steps from d-glucose and converted into 1,2,3-tri-O-acetyl-2-C-methyl-5-O-p-methylbenzoyl-d-ribofuranose (5), the starting compound for nucleoside synthesis. Compound 5 was also synthesised from 2-C-hydroxymethyl-2,3-O-isopropylidene-5-O-trityl-d-ribofuranose, prepared in 3 steps from d-ribose. Condensation of 5 with the bis-trimethylsilyl derivatives of uracil, N4-benzoylcytosine, and N6-benzoyladenine in the presence of F3CSO3OSiMe3 followed by removal of the protecting acyl groups yielded the corresponding 2′-C-methylnucleosides.  相似文献   

16.
Measurements of isotope ratios in car-3-ene biosynthesized in Pinus sylvestris from (3RS)-mevalonate-[2-14C,2R-3H1], and [2-14C,4R-3H1] and the corresponding S-epimers and also from geraniol- [14C,1-3H2] and nerol-[14 C,1-3H2] have shown that the carane skeleton is constructed from its presumed monocyclic precursor with migration of an olefinic bond, together with an unexpected 1,2-shift of a proton to the site of the original double bond. The detailed stereochemistry of the processes allows a two-step mechanism to be inferred for the cyclization in which a bonded intermediate is involved. The conversion of geraniol into nerol (en route to car-3-ene) probably is a redox process with the intermediacy of the corresponding aldehydes. The present results eliminate a possible mechanism for this isomerization wherein cyclopropane derivatives occur as intermediates.  相似文献   

17.

Background

Vascular patterning depends on coordinated timing of arteriovenous specification of endothelial cells and the concomitant hemodynamic forces supplied by the onset of cardiac function. Using a combination of 3D imaging by OPT and embryo registration techniques, we sought to identify structural differences between three different mouse models of cardiovascular perturbation.

Results

Endoglin mutant mice shared a high degree of similarity to Mlc2a mutant mice, which have been shown to have a primary developmental heart defect causing secondary vessel remodeling failures. Dll4 mutant mice, which have well-characterized arterial blood vessel specification defects, showed distinct differences in vascular patterning when compared to the disruptions seen in Mlc2a -/- and Eng -/- models. While Mlc2a -/- and Eng -/- embryos exhibited significantly larger atria than wild-type, Dll4 -/- embryos had significantly smaller hearts than wild-type, but this quantitative volume decrease was not limited to the developing atrium. Dll4 -/- embryos also had atretic dorsal aortae and smaller trunks, suggesting that the cardiac abnormalities were secondary to primary arterial blood vessel specification defects.

Conclusions

The similarities in Eng -/- and Mlc2a -/- embryos suggest that Eng -/- mice may suffer from a primary heart developmental defect and secondary defects in vessel patterning, while defects in Dll4 -/- embryos are consistent with primary defects in vessel patterning.  相似文献   

18.
Altered dynamics of microtubules (MT) are implicated in the pathophysiology of a number of brain diseases. Therefore, radiolabeled MT targeted ligands that can penetrate the blood brain barrier (BBB) may offer a direct and sensitive approach for diagnosis, and assessing the clinical potential of MT targeted therapeutics using PET imaging. We recently reported two BBB penetrating radioligands, [11C]MPC-6827 and [11C]HD-800 as specific PET ligands for imaging MTs in brain. The major metabolic pathway of the above molecules is anticipated to be via the initial labeling site, O-methyl, compared to the N-methyl group. Herein, we report the radiosynthesis of N-11CH3-MPC-6827 and N-11CH3-HD-800 and a comparison of their in vivo binding with the corresponding O-11CH3 analogues using microPET imaging and biodistribution methods. Both O-11CH3 and N-11CH3 labeled MT tracers exhibit high specific binding and brain. The N-11CH3 labeled PET ligands demonstrated similar in vivo binding characteristics compared with the corresponding O-11CH3 labeled tracers, [11C]MPC-6827 and [11C]HD-800 respectively.  相似文献   

19.
Convallaria majalis plants were fed dl-methionine-[1-14C]. [1-14C, 4-3H], and [1-14C, 2-3H], S-adenosyl-l-methionine-[1-14C], and dl-homoserine-[1-14C], resulting in the formation of labeled azetidine-2-carboxylic acid (A-2-C). The complete retention of tritium relative to carbon-14 in the feeding experiment involving methionine-[1-14C, 4-3H] indicates that aspartic acid or aspartic-β-semialdehyde are not intermediates between methionine and A-2-C. However, since the A-2-C derived from methionine-[1-14C, 2-3H] had lost 95% of the tritium relative to the C-14, it is not considered that methionine or its S-adenosyl derivative are the immediate precursors of A-2-C. Our data and that of others is consistent with the intermediate formation of γ-amino-α-ketobutyric acid which on cyclization yields 1-azetine-2-carboxylic acid, A-2-C then being formed on reduction.  相似文献   

20.
A method is described for the chemical synthesis of stigmasta-5,24-dien-3β-ol-[26-14C] and (24S)-24-ethylcholesta-5,25-dien-3β-ol-[26-14C] (clerosterol). 28-Isofucosterol-[7-3H2] fed to developing barley seedlings (Hordeum vulgare) was incorporated into sitosterol and stigmasterol confirming the utilisation of a 24-ethylidene sterol intermediate in 24α-ethyl sterol production in this plant. Also, the use of mevalonic acid-[2-14C(4R)-4-3H1] verified the loss of the C-25 hydrogen of 28-isofucosterol during its conversion into sitosterol and stigmasterol in agreement with the previously postulated isomerisation of the 24-ethylidene sterol to a Δ24(25)-sterol prior to reduction. However, feeding stigmasta-5,24-dien-3β-ol [26-14C] to barley seedlings gave very low incorporation into sitosterol. Attempts to trap radioactivity from mevalonic-[2-14C(4R)-4-3H1] in stigmasta-5,24-dien-3β-ol when this unlabelled sterol was administered to barley seedlings gave only a very small incorporation although both 28-isofucosterol and sitosterol were labelled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号