首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Life in space     
The physical conditions of Space are most inhospitable and the higher forms of life probably could exist extraterrestrially only on Venus, Jupiter, and Saturn in our Solar System, and the chances there are poor in light of present knowledge. Thus intelligent life probably exists only on the Earth.Although indigenous intelligent extraterrestrial life seems to be improbable it is by no means clear that man cannot learn to live reasonably comfortably on most of our planets and planetoids such as our moon, and it seems certain that he will be able to travel great distances in the solar system.Lower forms of life may well occur extraterrestrially.  相似文献   

3.
Cells in space     
How does one treat in a seriously injured astronaut in outer space or even another planet? To answer such a question, the US National Aeronautical Space Administration (NASA) has embarked on a program of growing tissues--and possibly whole organs--in space. NASA has developed a unique rotating bioreactor that allow cells to be grown in a microgravity environment that eliminates almost all shear forces placed upon a cell culture system while entering space. Back on earth, this novel bioreactor has led to exciting discoveries and applications by scientists trying to get cells to differentiate and form their natural three-dimensional tissue matrices--the holy grail of tissue engineers. NASA's bioreactor has allowed various labs to culture cells and even viruses previously impossible to grow using traditional methods. These successes are attributed to the bioreactor's ability to provide an unique environment that closely resembles tissue differentiation during embryogenesis, and thus allowing cellular expression of surface epitopes similar to that of intact tissues. It also appears that cells grown in a microgravity, low-shear environment allows for greater chemical signaling, probably as a result of more surface contact between cells. Realizing the bioreactor's commercial potential, Santa Monica, California-based VivoRx licensed exclusive rights from NASA for both therapeutic and diagnostic commercial applications. VivoRx has, in the past, successfully transplanted encapsulated islet cells from cadavers and porcine pancreas into insulin-dependent diabetics, perhaps a major breakthrough in the treatment of diabetes. However, pancreas from cadavers are in very short supply. The bioreactor may be the answer; VivoRx hopes the bioreactor will allow them to propagate enough human islet cells to use their cell-based approach to treat a large diabetic population. The company has already successfully grown islet cells generated from the bioreactors, and is beginning FDA-approved Phase I/II clinical trials.  相似文献   

4.
Plants in space     
Virtually all scenarios for the long-term habitation of spacecraft and other extraterrestrial structures involve plants as important parts of the contained environment that would support humans. Recent experiments have identified several effects of spaceflight on plants that will need to be more fully understood before plant-based life support can become a reality. The International Space Station (ISS) is the focus for the newest phase of space-based research, which should solve some of the mysteries of how spaceflight affects plant growth. Research carried out on the ISS and in the proposed terrestrial facility for Advanced Life Support testing will bring the requirements for establishing extraterrestrial plant-based life support systems into clearer focus.  相似文献   

5.

Editorial

Microbiology in space  相似文献   

6.
7.
Peter Nick 《Protoplasma》2013,250(6):1229-1230
  相似文献   

8.
Biomechanics and Modeling in Mechanobiology - Circulation of fluid through the central nervous system maintains fluid homeostasis and is involved in solute clearance. The glymphatic system is...  相似文献   

9.
10.
The bulk of complex molecules in the space between the stars is probably contained in small frozen interstellar dust grains. A typical grain is about as old as the earth and has, as a result of photochemical processing, converted a large fraction of its oxygen, carbon and nitrogen bearing mantle into large organic molecules whose maximum molecular weights are limited only by the grain size of about 0.1 m. Laboratory and theoretical methods provide the basis for explaining the evolution of interstellar grains from the time they are formed as seedlings in the atmospheres of cool evolved stars to the time they are destroyed by being incorporated into the material of new stars. The organic dust constitutes about one tenth of a percent of the total mass of the Milky Way and far outweighs any estimates of the total mass of all the planets. A planet like the earth is continually and directly accreting interstellar dust from space. Primitive carbonaceous meteorites show evidence of containing interstellar dust. Since comets are possibly almost pure aggregated interstellar dust they also provide a source of interstellar organic material on the earth.  相似文献   

11.
The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in our knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared with previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers, including space travelers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.Invited paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

12.
Rescue in space.     
《BMJ (Clinical research ed.)》1970,4(5731):321-322
  相似文献   

13.
14.
Summary The postflight phase of the Apollo MEED mycology attempts to identify survival according to exposure to specific quantitative space flight factors, while the second phase of studies identifies qualitative change other than cell survival [57]. Initial changes incurred in space on a fungal cell can be monitored and further examined on return of the fungal species test system to Earth. The postflight studies present a better understanding of the space environmental influences on living cells and a more clear understanding of the fungal species under examination.Presented as part of the Everett S. Beneke Symposium in Mycology, May 27, 1988.  相似文献   

15.
The universality of gravity (1 g ) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.  相似文献   

16.
The purpose of this paper is to present the status of that part of the [Microgravity Application Program] project related to the study of cartilage formation from pig chondrocytes. The work carried out so far followed two lines: (i) chondrocytes were incubated for up to three weeks in the RPM; (ii) a module developed for in-vitro cartilage formation will be tested in a sounding rocket flight (MASER 9, November 2001).  相似文献   

17.
Space flight induces many changes within the cardiovascular system that have the potential during long-duration space missions on the International Space Station to result in structural and functional changes in the vascular system. In this paper, we will first briefly review the potential changes in reflex control of the vascular system as observed primarily in short-duration studies of humans. We will then show how the reflex responses might interact with other changes anticipated during long-duration missions based on evidence from animal and human experimentation. This evidence points to the potential for changes in blood vessel structure, metabolism and responses to vasodilator and constrictor substances that might have long-term health consequences paralleling the effects of aging on the cardiovascular system.  相似文献   

18.
Blood clotting in space   总被引:2,自引:0,他引:2  
We describe herein a novel in vitro approach that can be used effectively to obtain valuable insights into the role of platelets, various coagulation proteins as well as proteins of the subendothelial extracellular matrix involved in the hemostatic and thrombotic processes occurring under microgravity. At difference with other experimental approaches proposed in the past our device operates in a closed system and under different shear forces, which better mimics flow conditions occurring in vessels. Furthermore our device by allowing real time monitoring of the thrombotic process and its underlying mechanisms can be regarded as a reliable system for the precise assessment of platelet function.  相似文献   

19.
20.
Summary An overview is presented on radiation problems in space, with emphasis on aspects of major interest for manned space exploration. A classification of the radiation hazards is presented and strategies for their evaluation are discussed. Space radiation problems are compared with characteristic aspects of radiation research in other disciplines, in order to provide further insight into those aspects that are unique to space.The research described in this paper was carried out while the author was a NASA VisitingThe research described in this paper was carried out while the author was a NASA VisitingThe research described in this paper was carried out while the author was a NASA VisitingThe research described in this paper was carried out while the author was a NASA Visiting  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号