首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Utilization of wastes from agriculture is becoming increasingly important due to concerns of environmental impact. The goals of this work were to evaluate the ability of an unusual organism, Saccharophagus degradans (ATCC 43961), to degrade the major components of plant cell walls and to evaluate the ability of S. degradans to produce polyhydroxyalkanoates (PHAs, also known as bioplastics). S. degradans can readily attach to cellulosic fibers, degrade the cellulose, and utilize this as the primary carbon source. The growth of S. degradans was assessed in minimal media (MM) containing glucose, cellobiose, avicel, and bagasse with all able to support growth. Cells were able to attach to avicel and bagasse fibers; however, growth on these insoluble fibers was much slower and led to a lower maximal biomass production than observed with simple sugars. Lignin in MM alone did not support growth, but did support growth upon addition of glucose, although with an increased adaptation phase. When culture conditions were switched to a nitrogen depleted status, PHA production commences and extends for at least 48 h. At early stationary phase, stained inclusion bodies were visible and two chronologically increasing infrared light absorbance peaks at 1,725 and 1,741 cm(-1) confirmed the presence of PHAs. This work demonstrates for what we believe to be the first time, that a single organism can degrade insoluble cellulose and under similar conditions can produce and accumulate PHA. Additional work is necessary to more fully characterize these capabilities and to optimize the PHA production and purification.  相似文献   

2.
《Process Biochemistry》2014,49(3):365-373
A three-stage control strategy independent of the organic substrate was developed for automated substrate feeding in a two-phase fed-batch culture of Cupriavidus necator DSM 545 for the production of the biopolymer polyhydroxybutyrate (PHB). The optimal feeding strategy was determined using glucose as the substrate. A combined substrate feeding strategy consisting of exponential feeding and a novel method based on alkali-addition monitoring resulted in a maximal cell concentration in the biomass growth phase. In the PHB accumulation phase, a constant substrate feeding strategy based on the estimated amount of biomass produced in the first phase and a specific PHB accumulation rate was implemented to induce PHB under limiting nitrogen at different biomass concentrations. Maximal cell and PHB concentrations of 164 and 125 g/L were obtained when nitrogen feeding was stopped at 56 g/L of residual biomass; the glucose concentration was maintained within its optimal range. The developed feeding strategy was validated using waste glycerol as the sole carbon source for PHB production, and the three-stage control strategy resulted in a PHB concentration of 65.6 g/L and PHB content of 62.7% while keeping the glycerol concentration constant. It can thus be concluded that the developed feeding strategy is sensitive, robust, inexpensive, and applicable to fed-batch culture for PHB production independent of the carbon source.  相似文献   

3.
He  Xun  He  Feng  Hang  Jiao  Li  Hui  Chen  Yali  Wei  Ping  Chen  Kequan  Li  Yan  OuYang  Pingkai 《Bioprocess and biosystems engineering》2018,41(6):811-817
Bioprocess and Biosystems Engineering - Industrial grade soluble corn starch was used directly and effectively as the fermentation substrate for microbial exopolysaccharides production. Bacillus...  相似文献   

4.
The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB.  相似文献   

5.
Low-cost sago starch was used as a carbon source for production of the exopolysaccharide kefiran by Lactobacillus kefiranofaciens. A simultaneous saccharification and fermentation process of sago starch for kefiran production was evaluated. Factors affecting the process such as an initial pH, temperature, starch concentration, including a mixture of α-amylase and glucoamylase were determined. The highest kefiran concentration of 0.85 g/l was obtained at the initial pH of 5.5, temperature of 30 °C, starch concentration of 4% and mixed-enzymes with activity of 100 U/g-starch. The use of a mixture of α-amylase and glucoamylase could enhance the productivity compared to the use of α-amylase alone. The optimal ratio of α-amylase to glucoamylase of 60:40 gave the highest kefiran production rate of 11.83 mg/l/h. This study showed that sago starch could serve as a low-cost substrate for kefiran production.  相似文献   

6.
7.
8.
Alcoholic fermentation from raw corn starch using Schizosaccharomyces pombe AHU 3179 and a raw starch saccharifying enzyme (RSSE) from Corticium rolfsii AHU 9627 was investigated. The optimum ethanol production was achieved at pH 3.5, 27°C and under the yeast cell concentration of 2.7 × 109 cells/ml. Addition of RSSE 5 units (as glucoamylase)/g raw corn starch was found sufficient. Under these optimum conditions, 18.5% (v/v, at 15°C) ethanol was obtained from 30% raw corn starch (30.8% as glucose) after incubation for 48 h.  相似文献   

9.
Biosurfactant production by Pseudomonas aeruginosa A41, a strain isolated from seawater in the gulf of Thailand, was examined when grown in defined medium containing 2% vegetable oil or fatty acid as a carbon source in the presence of vitamins, trace elements and 0.4% NH(4)NO(3), at pH 7 and 30 degrees C with 200 rpm-shaking for 7 days. The yield of biosurfactant steadily increased even after a stationary phase. Under such conditions the surface tension of the medium was lowered from 55-70 mN/m to 27.8-30 mN/m with every carbon source tested. However, types of carbon sources were found to affect biosurfactant yield. The yields of rhamnolipid biosurfactant were 6.58 g/L, 2.91 g/L and 2.93 g/L determined as rhamnose content when olive oil, palm oil and coconut oil, respectively, were used as a carbon source. Among them, biosurfactant obtained from palm oil was the best in lowering surface tension of the medium. Increase in biosurfactant activities in terms of oil displacement test and rhamnose content were observed to be higher with shorter chain fatty acids than that of the longer chains (C12>C14>C16). In addition, we found that C18:2, highly unsaturated fatty acid, showed higher oil displacement activity and rhamnose content than that of C18:1. The optimal oil displacement activity was found at pH 7-9 and in the presence of 0.5-3% NaCl. The oil displacement activity was stable to temperatures up to 100 degrees C for 15 h. Surface tension reduction activity was relatively stable at pH 2-12 and 0-5% of NaCl. Emusification activity tested with various types of hydrocarbons and vegetable oils showed similarity of up to 60% stability. The partially purified biosurfactant via TLC and silica gel column chromatography gave three main peaks on HPLC with mass spectra of 527, 272, and 661 m/z respectively, corresponding to sodium-monorhamnodecanoate, hydroxyhexadecanoic acid and an unknown compound, respectively.  相似文献   

10.
11.
Pure carbon sources, especially carbohydrates which are raw materials deriving from agro-industrial processes, are often used for small-scale single-cell oil production by fermentation. The aim of this study was to investigate the effects of different pure carbon sources on cell growth, lipid accumulation, and γ-linolenic acid (GLA) production by the filamentous fungus Mortierella isabellina DSM 1414 (Deutsche Sammlung von Mikroorganismen). The sugars utilized in this study are found extensively and abundantly in nature, especially in food raw materials and, in consequence, in agro-food industry wastes or surpluses. Thus, the potential of many waste materials containing these sugars to be used in the production of single-cell oil by fermentation could also be evaluated. The effects of the sugars utilized on cell growth, biomass production, and lipid production were investigated. Fatty acids were also analysed in the lipids produced at the end of the fermentations. Results showed that the maximum biomass production was 10.80 g/L in lactose-based media, while the maximum oil production was 5.44 g/L in maltose-based media. Oleic (20.42%–42.94%), palmitic (14.96%–22.19%), and stearic (9.00%–26.92%) acids were the major fatty acids along with linoleic acid (11.35%–18.67%) and GLA (3.56%–8.04%). The production of GLA as the target fatty acid was remarkable. This study indicates that agro-industrial waste including most of the sugars utilized (except for arabinose and sucrose with lipid production of 0.81 and 0.28 g/L, respectively) can be employed for production of single-cell oil by M. isabellina DSM 1414 which contains a high amount of GLA.  相似文献   

12.
An extracellular lipase-producing fungus was isolated from the garden soil of the Post Graduate Department of Botany, Utkal University, Bhubaneswar, Odisha, India and identified as Aspergillus terreus. The A. terreus strain isolated was found to be capable of producing lipase in both solid state culture and liquid static surface culture. Experiments aimed at evaluating and improving the production of lipase and at studying the culture conditions revealed that of the many different materials tested as substrates, mustard oil cake (MoC) was the best substrate for extracellular lipase production. A correlation was found between the lipase production profile and biomass development. In a study aimed at continuing this line of research, we have investigated the influence of various culture conditions, such as environmental (i.e. temperature and pH), nutritional (i.e. carbon, nitrogen, metal ions, vitamins, combined agro-wastes and growth regulators) and other factors (inoculum size and initial moisture content) on the production of lipase by A. terreus in solid state and liquid static surface cultures. We observed that optimum lipase biosynthesis occurred under the following conditions: initial pH of 6.0, 30 °C, a 96-h incubation, lactose and ammonium persulphate as the carbon and nitrogen source respectively and 80 % moisture content. Changes in the vitamins (vitamin C, riboflavin, folic acid and vitamin E) and growth regulators (gibberellic acid, kinetin, 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid) did not support enhanced lipase production. MoC and neem oil cake (NoC) added to the media at a ratio of 9:1 respectively, supported maximum lipase production. Based on these results, we concluded that controlling the various culture conditions, supplementing MoC as a substrate and nutrient source modification of the medium can spectacularly enhance lipase biosynthesis by A. terreus.  相似文献   

13.
A fungal strain (S33-2), able to grow on cooked starch and produce a substantially high level of kojic acid, was isolated from morning glory flower ( Bixa orellana ). The fungus was characterized and identified as Aspergillus flavus. The effect of different types of starch (sago, potato and corn starch) on growth of strain S33-2 and kojic acid production was examined using shake flasks. It was found that strain S33-2 grew well on all types of starch investigated. However, kojic acid production was highest when corn starch was used, with the maximum kojic acid obtained being comparable to fermentation using glucose. The highest kojic acid production (19·2 g l−1) was obtained when 75 g l−1 corn starch was used. This gave a yield, based on starch consumed, and an overall productivity of 0·256 g g−1 and 0·04 g l−1 h−1, respectively.  相似文献   

14.
In recent years, biotechnological conversion of the alternative carbon source acetate has attracted much attention. So far, acetate has been mainly used for microbial production of bioproducts with bulk applications. In this study, we aimed to investigate the potential of acetate as carbon source for heterologous protein production using the acetate-utilizing platform organism Corynebacterium glutamicum. For this purpose, expression of model protein eYFP with the promoter systems T7lac and tac was characterized during growth of C. glutamicum on acetate as sole carbon source. The results indicated a 3.3-fold higher fluorescence level for acetate-based eYFP production with T7 expression strain MB001(DE3) pMKEx2-eyfp compared to MB001 pEKEx2-eyfp. Interestingly, comparative eyfp expression studies on acetate or glucose revealed an up to 83% higher biomass-specific production for T7 RNAP-dependent eYFP production using acetate as carbon source. Furthermore, high-level protein accumulation on acetate was demonstrated for the first time in a high cell density cultivation process with pH-coupled online feeding control, resulting in a final protein titer of 2.7 g/L and product yield of 4 g per 100 g cell dry weight. This study presents a first proof of concept for efficient microbial upgrading of potentially low-cost acetate into high-value bioproducts, such as recombinant proteins.  相似文献   

15.
Shen Z  Wang J 《Bioresource technology》2011,102(19):8835-8838
A novel kind of cross-linked starch/polycaprolactone (SPCL11) was prepared and used as carbon source and biofilm attachment carrier for denitrifying bacteria. The results showed that the average denitrification rate was 0.027 mg NO?-N/(g·h) in batch tests. The continuous fixed-bed experiments indicated that more than 90% NO?-N was removed, the denitrification rate reached 26.86 mg NO?-N/(L·h), and NO?-N concentration was below 0.16 mg/L. The formation of NH?-N was observed, but usually below 1.0 mg/L. Rapid biodegradation of starch on the surfaces of SPCL11 granules could cause an initial excess release of dissolved organic compound (DOC), and shortening HRT from 2h to 1h can result in sharp decrease of DOC.  相似文献   

16.
Abstract

Echinocandin B, a kind of antimycotic with cyclic lipo-hexapeptides, was produced by fermentation with Aspergillus nidulans using fructose as main carbon source. The objective of this study was to screen a high-yield mutant capable of using cheap starch as main carbon source by atmospheric and room temperature plasma (ARTP) treatment in order to decrease the production cost of echinocandin B. A stable mutant A. nidulans ZJB19033, which can use starch as optimal carbon source instead of expensive fructose, was selected from two thousands isolates after several cycles of ARTP mutagenesis. To further increase the production of echinocandin B, the optimization of fermentation medium was performed by response surface methodology (RSM), employing Plackett-Burman design (PBD) followed by Box-Behnken design (BBD). The optimized fermentation medium provided the optimal yield of echinocandin B, 2425.9?±?43.8?mg/L, 1.3-fold compared to unoptimized medium. The results indicated that the mutant could achieve high echinocandin B production using cheap starch as main carbon source, and the cost of carbon sources in fermentation medium reduced dramatically by about 45%.  相似文献   

17.
Microbial fuel cells represent a new method for producing electricity from the oxidation of organic matter. A mediatorless microbial fuel cell was developed using Escherichia coli as the active bacterial component with synthetic wastewater of potato extract as the energy source. The two-chamber fuel cell, with a relation of volume between anode and cathode chamber of 8:1, was operated in batch mode. The response was similar to that obtained when glucose was used as the carbon source. The performance characteristics of the fuel cell were evaluated with two different anode and cathode shapes, platinised titanium strip or mesh; the highest maximum power density (502mWm(-2)) was achieved in the microbial fuel cell with mesh electrodes. In addition to electricity generation, the MFC exhibited efficient treatment of wastewater so that significant reduction of initial oxygen demand of wastewater by 61% was observed. These results demonstrate that potato starch can be used for power generation in a mediatorless microbial fuel cell with high removal efficiency of chemical oxygen demand.  相似文献   

18.
In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8?g:10?g:2?g yielded the highest enzyme production of 201.6?U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5?×?106 spores/mL inoculum, which gave the highest enzyme activity of 389.5?U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2?g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300?g raw cassava chips/L with cane molasses.  相似文献   

19.
Activated carbons were investigated for their heat catalytic effects to improve saccharification of starch by autohydrolysis in water under microwave electromagnetic field, and the results were compared with graphite and carbon nanotubes. The activated carbons with low adsorptive capacity of maltose showed high saccharification rate, while those with high adsorptive capacity exhibited low saccharification. In addition, the former activated carbons decreased the saccharification temperature by 10-30 °C. Maltooligosaccharides produced in the presence of the latter activated carbons were recovered by desorption with 50% aqueous ethanol. The results indicated that both adsorptive capacities of maltooligosaccharides and catalytic effects of hot spots arisen from the uneven surface structure of activated carbons might contribute to the improvement in starch saccharification.  相似文献   

20.
Direct conversion of gelatinized sago starch into kojic acid byAspergillus flavus strain having amylolytic enzymes was carried out at two different scales of submerged batch fermentation in a 250-mL shake flask and in a 50-L stirred-tank fermentor. For comparison, fermentations were also carried out using glucose and glucose hydrolyzate from enzymic hydrolysis of sago starch as carbon sources. During kojic acid fermentation of starch, starch was first hydrolyzed to glucose by the action of α-amylase and glucoamylase during active growth phase. The glucose remaining during the production phase (non-growing phase) was then converted to kojic acid. Kojic acid production (23.5g/L) using 100 g/L sago starch in a shake flask was comparable to fermentation of glucose (31.5 g/L) and glucose hydrolyzate (27.9 g/L) but in the 50-L fermentor was greatly reduced due to non-optimal aeration conditions. Kojic acid production using glucose was higher in the 50-L fermentor than in the shake flask.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号