首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB.  相似文献   

2.
    
Crude glycerol – a by‐product of the large scale production of diesel oil from rape – is examined for its possible use as a cheap feedstock for the biotechnological synthesis of poly(3‐hydroxybutyrate) (PHB). The glycerol samples of various manufacturers differ in their contamination with salts (NaCl or K2SO4), methanol or fatty acids. At high cell density fermentation these pollutants could possibly accumulate to inhibiting concentrations. The bacteria used were Paracoccus denitrificans and Cupriavidus necator JMP 134, which accumulate PHB from pure glycerol to a content of 70 % of cell dry mass. When using crude glycerol containing 5.5 % NaCl, a reduced PHB content of 48 % was observed at a bacterial dry mass of 50 g/L. Furthermore the PHB yield coefficient was reduced, obviously due to osmoregulation. The effect of glycerol contaminated with K2SO4 was less pronounced. The molecular weight of PHB produced with P. denitrificans or C. necator from crude glycerol varies between 620000 and 750000 g/mol which allows the processing by common techniques of the polymer industry.  相似文献   

3.
In this study, nattokinase was purified from Bacillus subtilis using ion exchange chromatography and immobilized upon polyhydroxybutyrate (PHB) nanoparticles. A novel strain isolated from industrial dairy waste was found to synthesize polyhydroxyalkanoates (PHA) and the strain was identified as Brevibacterium casei SRKP2. PHA granules were extracted from 48 h culture and the FT-IR analysis characterized them as PHB, a natural biopolymer from B. casei. Nanoprecipitation by solvent displacement technique was used to synthesize PHB nanoparticles. PHB nanoparticles were characterized using transmission electron microscopy and particle size ranged from 100–125 nm. Immobilization of nattokinase upon PHB nanoparticles resulted in a 20% increase in the enzyme activity. Immobilization also contributed to the enhanced stability of the enzyme. Moreover, the activity was completely retained on storage at 4 °C for 25 days. The method has proven to be highly simple and can be implemented to other enzymes also.  相似文献   

4.
Arabidopsis plants were transformed with a multi-gene construct for expression of the polyhydroxybutyrate (PHB) biosynthetic pathway containing a gene switch that can be activated by commercially available non-steroidal ecdysone analogs approved for use on some crops as pesticides. T(1) progeny of transgenic Arabidopsis plants were isolated and screened for PHB production in the presence of ecdysone analogs. T(2) progeny derived from selected T(1) lines were subjected to further analysis by comparing PHB production levels prior to treatment with inducing agent and 21 days after initiation of induction. Significant PHB production was delayed in many of the engineered plants until after induction. PHB levels of up to 14.3% PHB per unit dry weight were observed in young leaves harvested from engineered T(2) plants after applications of the commercial ecdysone analog Mimic. PHB in older leaves reached levels of up to 7% PHB per unit dry weight. This study represents a first step towards engineering a chemically inducible gene switch for PHB production in plants using inducing agents that are approved for field use.  相似文献   

5.
【目的】致病型问号钩端螺旋体(问号钩体, Leptospira interrogans)和腐生型双曲钩体(L. biflexa)能够大量合成菌体内贮藏物, 这可能是钩体在营养贫瘠环境中长时间存活的主要原因之一。本研究对钩体聚Beta羟基丁酸(PHB)贮藏物进行定性定量测定, 通过基因组分析补充定义PHB合成主要功能基因, 并采用分子生物学方法初步证明PHB合成途径的完整性, 为进一步研究PHB合成与钩体抗逆能力的关系奠定基础。【方法】采用脂类特异性尼罗红染色法和浓硫酸氧化-紫外分光光度计测定法, 对问号钩体和双曲钩体的PHB贮藏物进行定性定量测定; 采用生物信息学方法(BLAST和InterProscan/InterPro2Go), 通过同源性分析和功能结构域搜索寻找钩体基因组中的PHB合成相关基因; 最后采用克隆测序和定量RT-PCR技术检测相关基因表达情况, 初步验证生物信息学预测结果。【结果】尼罗红染色和氧化后比色定量实验证明钩体合成细菌常见贮藏物PHB, 问号钩体合成量为菌体干重的42%?45%, 双曲钩体合成量为64%?68%。尽管已公布的多个钩体基因组中均没有定义完整的PHB合成途径, 但本研究通过综合生物信息学分析, 在问号钩体和双曲钩体中鉴定了PHB合成途径的主要功能基因(phbC)。克隆测序和定量RT-PCR证实钩体转录表达大部分PHB合成相关基因(phbA/B/C), 说明钩体内该生物途径基本完整, 且部分高水平表达基因可能是钩体主要的PHB合成相关基因。【结论】问号钩体和双曲钩体均可合成PHB贮藏物, 且具有基本完整的PHB合成生物途径。  相似文献   

6.
    
《Process Biochemistry》2014,49(3):365-373
A three-stage control strategy independent of the organic substrate was developed for automated substrate feeding in a two-phase fed-batch culture of Cupriavidus necator DSM 545 for the production of the biopolymer polyhydroxybutyrate (PHB). The optimal feeding strategy was determined using glucose as the substrate. A combined substrate feeding strategy consisting of exponential feeding and a novel method based on alkali-addition monitoring resulted in a maximal cell concentration in the biomass growth phase. In the PHB accumulation phase, a constant substrate feeding strategy based on the estimated amount of biomass produced in the first phase and a specific PHB accumulation rate was implemented to induce PHB under limiting nitrogen at different biomass concentrations. Maximal cell and PHB concentrations of 164 and 125 g/L were obtained when nitrogen feeding was stopped at 56 g/L of residual biomass; the glucose concentration was maintained within its optimal range. The developed feeding strategy was validated using waste glycerol as the sole carbon source for PHB production, and the three-stage control strategy resulted in a PHB concentration of 65.6 g/L and PHB content of 62.7% while keeping the glycerol concentration constant. It can thus be concluded that the developed feeding strategy is sensitive, robust, inexpensive, and applicable to fed-batch culture for PHB production independent of the carbon source.  相似文献   

7.
8.
  总被引:1,自引:0,他引:1  
Bacterial polyesters such as polyhydroxybutyrate (PHB) or polyhydroxyalkanoates (PHAs) have to pass the following requirements to be accepted on a large scale: (i) they have to fulfil an urgent market need: (ii) they require that new and efficient composting systems are installed in urban areas; (iii) they have to complete with the present plastics as far as quality and processing performance are concerned; (iv) they have to meet the requirement for the registration as food packages; and (v) they have to meet competitive price limits. (i) Some 30% of the plastics in the municipal waste originates from goods which are less than 1 year in use and tend to be heavily soiled by food and feed residues. This part is difficult and expensive to dispose of. Biodegradable alternatives could replace a large part of it. The waste could be diverted from landfills and incineration to composting sites near the end user. The savings in costs and frustrations are the source of a pressing demand for biopolymers, especially for producing goods which do not demand longevity and which are likely to end up soiled with organic matters. (ii) Composting infrastructures exist in rural areas. In urban areas new systems for collecting and composting ‘garden and kitchen wastes’ are being installed for reducing landfill problems, especially in Austria, Denmark, Germany and the Netherlands. These installations give biopolymers a competitive edge in the disposal discussion. (iii) Bacterial polyesters meet various quality and processing performances. They are water-resistant, and goods made of the polyesters are water-tight. The material can be processed by injection and by blow moulding. However, the esters are not flexible enough for forming films or foils. They also tend to become brittle and to lose their vapour barrier properties. It is expected that these limits will be overcome by improving blend formulations. (iv) Bacterial polyesters are not yet allowed for use as food package material. Since the esters represent a novel product, the procedure for the registration poses serious, but no insoluble problems. They require long and costly tests. There are no indications that bacterial polyesters would not attain the requirements. However, they are not expected to serve as food packages in the near future. (v) The present prices for bacterial polyesters are far too high to be accepted on a large scale by the processing and packaging industry. Costs are high mainly because of the raw material prices and to the small-scale production units. They can be lowered to accepted levels by investing in larger units in countries where inexpensive raw materials are available. Thus they will be able to meet the price limits. Since bacterial polyesters increasingly meet the requirements for the penetration of a mass market and since more and more consumers accept composting as an environmentally sound way of recycling organic materials, the polyesters are expected to penetrate a significant part of the short-lived and contaminated plastic products markets by the turn of the century.  相似文献   

9.
One of the targets in oil palm genetic engineering programme is the production of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV) in the oil palm leaf tissues. Production of PHB requires the use of phbA (β-ketothiolase type A), phbB (acetoacetyl-CoA reductase) and phbC (PHB synthase) genes of Ralstonia eutropha, whereas bktB (β-ketothiolase type B), phbB, phbC genes of R. eutropha and tdcB (threonine dehydratase) gene of Escherichia coli were used for PHBV production. Each of these genes was fused with a transit peptide (Tp) of oil palm acyl-carrier-protein (ACP) gene, driven by an oil palm leaf-specific promoter (LSP1) to genetically engineer the PHB/PHBV pathway to the plastids of the leaf tissues. In total, four transformation vectors, designated pLSP15 (PHB) and pLSP20 (PHBV), and pLSP13 (PHB) and pLSP23 (PHBV), were constructed for transformation in Arabidopsis thaliana and oil palm, respectively. The phosphinothricin acetyltransferase gene (bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23 were used as the plant selectable markers. Matrix attachment region of tobacco (RB7MAR) was also included in the vectors to stabilize the transgene expression and to minimize silencing due to positional effect. Restriction digestion, PCR amplification and/or sequencing were carried out to ensure sequence integrity and orientation.  相似文献   

10.
A cluster of genes encoding polyhydroxybutyrate (PHB) depolymerase (phaZ), PHB synthase (phaC), phasin (phaP), and the regulator protein (phaR) was previously identified in Rhodobacter sphaeroides FJ1 (R. sphaeroides FJ1). In this study, we investigated the role of the PhaR protein on the expression of the pha genes. Immunoblot analysis revealed that the expressions of phaP, phaZ and phaR genes in wild-type cells of R. sphaeroides FJ1 are repressed during the active growth phase, with the exception of phaC. A phaR deletion mutant of R. sphaeroides FJ1 was constructed, and the basal level of phaP and phaZ expression in this mutant was markedly increased. Electrophoretic mobility shift assays demonstrated that PhaR binds to the promoter region of phaP as well as those of phaR and phaZ. These results suggest that the PhaR protein is a repressor of phaP, phaR, and phaZ genes in R. sphaeroides FJ1.  相似文献   

11.
We evaluated the effects of the main auxin phytohormone, indole-3-acetic acid (IAA), on the central metabolism of Sinorhizobium meliloti 1021. We either treated S. meliloti 1021 wild-type cells with 0.5 mM IAA, 1021+, or use a derivative, RD64, of the same strain harboring an additional pathway for IAA biosynthesis (converting tryptophan into IAA via indoleacetamide). We assayed the activity of tricarboxylic acid cycle (TCA) key enzymes and found that activity of citrate synthase and α-ketoglutarate dehydrogenase were increased in both 1021+ and RD64 as compared to the wild-type strain. We also showed that the intracellular acetyl-CoA content was enhanced in both RD64 and 1021+ strains when compared to the control strain. The activity of key enzymes, utilizing acetyl-CoA for poly-β-hydroxybutyrate (PHB) biosynthesis, was also induced. The PHB level measured in these cells were significantly higher than that found in control cells. Moreover, 4-week-long survival experiments showed that 80% of 1021 cells died, whereas 50% of RD64 cells were viable. Medicago truncatula plants nodulated by RD64 (Mt-RD64) showed an induction of both acetylene reduction activity and stem dry weight production.  相似文献   

12.
Two inexpensive substrates, starch and whey were used to produce poly(3-hydroxybutyrate) (PHB) in fed-batch cultures of Azotobacter chroococcum and recombinant Escherichia coli, respectively. Oxygen limitation increased PHB contents in both fermentations. In fed-batch culture of A. chroococcum, cell concentration of 54 g l−1 with 46% PHB was obtained with oxygen limitation, whereas 71 g l−1 of cell with 20% PHB was obtained without oxygen limitation. The timing of PHB biosynthesis in recombinant E. coli was controlled using the agitation speed of a stirred tank fermentor. A PHB content of 80% could be obtained with oxygen limitation by increasing the agitation speed up to only 500 rpm.  相似文献   

13.
An extensive amount of knowledge on biochemistry of poly(3-hydroxyalkanoic acid) (PHA) synthesis and on its biodegradation has accumulated during the last two decades. Numerous genes encoding enzymes involved in the formation of PHA and in PHA degradation (PHA depolymerases) were cloned and characterized from many microorganisms. A large variety of methods exists for determination of PHA depolymerase activity and for preparation of the polymeric substrate (PHA). Unfortunately, results obtained with these different methods cannot be compared directly because they highly depend on the assay method applied and on the history of PHA granules preparation. In this contribution, the peculiarities, advantages, disadvantages and limitations of existing PHA depolymerase assay methods are described.  相似文献   

14.
    
Utilization of wastes from agriculture is becoming increasingly important due to concerns of environmental impact. The goals of this work were to evaluate the ability of an unusual organism, Saccharophagus degradans (ATCC 43961), to degrade the major components of plant cell walls and to evaluate the ability of S. degradans to produce polyhydroxyalkanoates (PHAs, also known as bioplastics). S. degradans can readily attach to cellulosic fibers, degrade the cellulose, and utilize this as the primary carbon source. The growth of S. degradans was assessed in minimal media (MM) containing glucose, cellobiose, avicel, and bagasse with all able to support growth. Cells were able to attach to avicel and bagasse fibers; however, growth on these insoluble fibers was much slower and led to a lower maximal biomass production than observed with simple sugars. Lignin in MM alone did not support growth, but did support growth upon addition of glucose, although with an increased adaptation phase. When culture conditions were switched to a nitrogen depleted status, PHA production commences and extends for at least 48 h. At early stationary phase, stained inclusion bodies were visible and two chronologically increasing infrared light absorbance peaks at 1,725 and 1,741 cm(-1) confirmed the presence of PHAs. This work demonstrates for what we believe to be the first time, that a single organism can degrade insoluble cellulose and under similar conditions can produce and accumulate PHA. Additional work is necessary to more fully characterize these capabilities and to optimize the PHA production and purification.  相似文献   

15.
The microbial surface and flocculability were qualitatively characterized through the combination of the surface thermodynamic and the extended DLVO approaches, with Ralstonia eutropha, a polyhydroxybutyrate-producing bacterium, as an example. The negativity of the ζ potential of R. eutropha decreased from the initial −19.5 to −11 mV in its cultivation with the consumption of glucose. The total interfacial free energy (ΔG adh) was changed from −80 to 28.5 mJ m−2 in its entire growth process. This suggests that the bacterial surface changed from hydrophobic into hydrophilic, resulting in an alteration of its surface characteristics and flocculability in its different growth phases. As a result, the stability ratio of suspensions increased with the increasing cultivation time, indicating that the cell particles became more repulsive with each other and led to a more stable suspension of R. eutropha in its cultivation. The obtained information in this work might be useful for better understanding the surface characteristics and the flocculability and even manipulating its flocculability in the microbial growth process.  相似文献   

16.
运动发酵单胞菌是一种很有潜力的酒精生产菌。PHB是生物合成的一种聚酯,有研究表明,该类物质在微生物体内的积累能够提高宿主菌的抗逆能力。本文对运动发酵单胞菌进行了如下改造:将PHB合成操纵子phbCAB与来源于运动发酵单胞菌的丙酮酸脱羧酶的启动子准确融合,插入广泛宿主载体pBBR1MCS-1中,并利用电转化的方法转入运动发酵单胞菌中。在重组菌中检测到了PhaA和PhaB的酶活;并首次在运动发酵单胞菌中实现了PHB的积累。摇瓶实验表明,前48小时重组菌的乙醇积累量提高了约10%,后续发酵中可能由于葡萄糖耗尽,重组菌与野生菌乙醇积累量差别不大。  相似文献   

17.
聚-β-羟基丁酸(PHB)在细菌建立感受态中的作用   总被引:1,自引:0,他引:1  
介绍了PHB作为细胞膜上的物质运输通道成分在细菌感受态中的结构、分布、分析方法以及其可能的作用 ,阐明了PHB的合成与细菌感受态建立的关系和PHB在感受态细胞摄取外源DNA时的作用方式 ,同时也对控制生物体合成PHB的相关基因和酶作了简要介绍 ,并探讨了研究PHB的实际意义。  相似文献   

18.
    
For the first time, a systematic approach was conducted to determine the key factors influencing the kinetics of hydroxyalkanote (HA) extraction in biological systems. Six mixed microbial systems where polyhydroxyalkanoate (PHA) is produced were evaluated. Experiments were carried out for full-scale and lab-scale activated sludge systems using different configurations (containing floccular or granular sludge), as well as specific PHA accumulating cultures that contain high or low intracellular PHA fractions. The overall reaction was limited by the kinetics of the PHA hydrolysis in floccular cultures, whereas in granular cultures, it was limited by the cell lysis step. The monomeric composition of the polymer also had an impact on the HA extraction rate: higher acid concentration and a longer digestion time should be employed when cells accumulate monomers with more substituents, such as hydroxy-2-methylbutyrate (H2MB) and hydroxy-2-methylvalerate (H2MV). This study optimised the method for HA extraction, which impacts the assessment of the quantity and quality of PHA biopolymers.  相似文献   

19.
Perspectives on the production of polyhydroxyalkanoates in plants   总被引:2,自引:0,他引:2  
Abstract Poly-β-hydroxybutyrate (PBH) was recently shown to be produced in genetically engineered plants which expressed the genes from Alcaligenes eutrophus responsible for the formation of PHB from acetoacetyl-CoA. The transgenic plants accumulated PHB as granules which were similar in size and appearance to the bacterial PHB granules. These observations suggest that large scale production of PHB and other polyhydroxyalkanoates in genetically altered crop plants may be feasible.  相似文献   

20.
球衣菌胞内聚β-羟基丁酸提取方法的研究   总被引:1,自引:0,他引:1  
以球衣菌(Sphaerotilus natans FQ40)为材料,比较多种破壁方法对其胞内PHB提取率的影响。结果表明SDS-NaClO混合破壁法最适宜于提取球衣菌胞内PHB。细胞悬液先用10g/L SDS,35℃处理10min,再用体积分数5%的NaClO处理5min后,经离心、洗涤、烘干,用热氯仿抽提PHB,提取率可达56%,纯度与标准品相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号