首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, highly sensitive method for the determination of morphine and its metabolites morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G) and normorphine has been developed using high-performance liquid chromatography–electrospray mass spectrometry, with the deuterated analogues as internal standards. The analytes were extracted automatically using end-capped C2 solid-phase extraction cartridges. Baseline separation of morphine, M3G and M6G was achieved on a LiChrospher 100 RP-18 end-capped analytical column (125×3 mm I.D., 5 μm particle size) with water–acetonitrile–tetrahydrofuran–formic acid (100:1:1:0.1, v/v) as the mobile phase. Morphine and normorphine coeluate and were separated mass spectrometrically. The mass spectrometer was operated in the selected-ion monitoring mode using m/z 272 for normorphine, m/z 286 for morphine, m/z 462 for morphine-6-glucuronide. Due to an interfering peak, M3G was measured by tandem mass spectrometry in the daughter-ion mode. The limits of quantitation achieved with this method were 1.3 pmol/ml for morphine, 1.5 pmol/ml for normorphine, 1.0 pmol/ml for M6G and 5.4 pmol/ml for M3G in serum or cerebrospinal fluid. The limits of quantitation achieved in urine were 10 pmol/ml for morphine, 20 pmol/ml for normorphine and M6G and 50 pmol/ml for M3G using a sample size of 100 μl. The method described was successfully applied to the determination of morphine and its metabolites in human serum, cerebrospinal fluid and urine in pharmacokinetic and drug interaction studies.  相似文献   

2.
As the sole plant source of many potent alkaloids, opium poppy (Papaver somniferum L.) is an important medicinal crop. Nevertheless, few studies have characterized opium poppy germplasm with crop-specific molecular markers. Because Turkey is a diversity center for opium poppy, Turkish germplasm is a valuable genetic resource for association mapping studies aimed at identifying QTLs controlling morphine content and agronomic traits. In this study, the morphological diversity and molecular diversity of 103 Turkish opium poppy landraces and 15 cultivars were analyzed. Potentially useful morphological variation was observed for morphine content, plant height, and capsule index. However, the landraces exhibited limited breeding potential for stigma number, and seed and straw yields. Both morphological and molecular analyses showed distinct clustering of cultivars and landraces. In addition, a total of 164 SSR and 367 AFLP polymorphic loci were applied to an opium poppy association mapping panel composed of 95 opium poppy landraces which were grown for two seasons. One SSR and three AFLP loci were found to be significantly associated with morphine content (P < 0.01 and LD value (r 2) = 0.10–0.32), and six SSR and 14 AFLP loci were significantly associated with five agronomic traits (plant height, stigma number, capsule index, and seed and straw yields) (P < 0.01 and LD value (r 2) = 0.08–0.35). This is the first report of association mapping in this crop. The identified markers provide initial information for marker-assisted selection of important traits in opium poppy breeding.  相似文献   

3.
A procedure is described for the isolation from the phototrophic procaryole Anacystis nidulans of [U-14C]-labelled glycogen, with high specific radioactivity,formed when NaH14CO3 was added to non-dividing cells that continued to photoassimilate CO2. [U-14C]-Labelled glycogen was then treated with isoamylase (EC 3.2.1.68), isoamylase plus beta-amylase (EC 3.2.1.2), or glucoamylase (EC 3.2.1.3) to give [U-14C]-labelled maltosaccharides, maltose-U-14C, or d-glucose-U-14C, respectively.  相似文献   

4.
J C Szerb  M M Vohra 《Life sciences》1979,24(21):1983-1988
The concentration of normorphine causing a 50 per cent inhibition (IC50) of electrically induced twitches in the vas deferens from seven strains of mice varied over a 13-fold range, BALB/cKB being the most, C57BL/6J the least sensitive. There was no significant correlation between the IC50's of normorphine and met-enkephalin. In the sensitive BALB/cKB mice, both normorphine and met-enkephalin were more effective inhibiting contractions evoked by 0.1 Hz than by 0.01 or 1.2 Hz stimulation. This difference was not observed in the insensitive C57BL/6J mice. Naloxone was purely an antagonist against both normorphine and met-enkephalin in BALB/cKB mice but in low concentration it potentiated the inhibitory effect of both normorphine and met-enkephalin in C57BL/6J mice. Results suggest that qualitative differences in opiate receptors and differences in transmitter release mechanism contribute to the variable sensitivity to morphine of the vas deferens from different strains of mice.  相似文献   

5.

Background

Morphine, the principal active agent in opium, is not restricted to plants, but is also present in different animal tissues and cell types, including the mammalian brain. In fact, its biosynthetic pathway has been elucidated in a human neural cell line. These data suggest a role for morphine in brain physiology (e.g., neurotransmission), but this hypothesis remains a matter of debate. Recently, using the adrenal neuroendocrine chromaffin cell model, we have shown the presence of morphine-6-glucuronide (M6G) in secretory granules and their secretion products, leading us to propose that these endogenous alkaloids might represent new neuroendocrine factors. Here, we investigate the potential function of endogenous alkaloids in the central nervous system.

Methodology and Principal Findings

Microscopy, molecular biology, electrophysiology, and proteomic tools were applied to human neuroblastoma SH-SY5Y cells (i) to characterize morphine and M6G, and (ii) to demonstrate the presence of the UDP-glucuronyltransferase 2B7 enzyme, which is responsible for the formation of M6G from morphine. We show that morphine is secreted in response to nicotine stimulation via a Ca2+-dependent mechanism involving specific storage and release mechanisms. We also show that morphine and M6G at concentrations as low as 10−10 M are able to evoke specific naloxone-reversible membrane currents, indicating possible autocrine/paracrine regulation in SH-SY5Y cells. Microscopy and proteomic approaches were employed to detect and quantify endogenous morphine in the mouse brain. Morphine is present in the hippocampus, cortex, olfactory bulb, and cerebellum at concentration ranging from 1.45 to 7.5 pmol/g. In the cerebellum, morphine immunoreactivity is localized to GABA basket cells and their termini, which form close contacts on Purkinje cell bodies.

Conclusions/Significance

The presence of morphine in the brain and its localization in particular areas lead us to conclude that it has a specific function in neuromodulation and/or neurotransmission. Furthermore, its presence in cerebellar basket cell termini suggests that morphine has signaling functions in Purkinje cells that remain to be discovered.  相似文献   

6.
Immunofluorescence labeling and shotgun proteomics were used to establish the cell type–specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy.  相似文献   

7.
Varying doses of morphine sulfate (10, 20 or 40 mg/kg daily × 10) were observed to suppress metabolic activities in the mouse prostate gland. Prostate gland fructose, an index of androgenic activity, was significantly reduced by these dose regimes of morphine (P < 0.01). Injections of morphine sulfate (20 mg/kg daily × 10) led to an inhibitition in the in vitro synthesis of both fructose?14C and sorbitol?14C from glucose?14C by the prostate gland, part of which may have been due to decreased uptake of glucose by the gland. The in vitro assimilation of 2-deoxyglucose?14C by the prostate was also reduced by morphine treatment. The in vitro actions of morphine (2 × 10?3M) on the metabolism of radioactive glucose by the mouse prostate gland likewise revealed a significant reduction in the formation of sorbitol?14C, but no decrease in fructose?14C formation. These results indicate that both the in vitro and in vivo actions of morphine can inhibit fructose metabolism in the prostate gland.  相似文献   

8.
Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid l-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O3- and the O6-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O3-demethylation and the O6-demethylation are members of the FeII/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O3-demethylation. We report that demethylation of thebaine at the O6-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O6-demethylation of thebaine by an FeII/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O6-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O6-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified.  相似文献   

9.
In the freely moving rat [U-14C]glucose was microinjected through a guide tube to label a discrete site in the hypothalamus. After 10 min, a push-pull cannula was used to perfuse an artificial CSF within the site at a rate of 25 l/min. During the fourth 5 min perfusion of each series, one of three concentrations of either ethanol (94–471 mM) or morphine SO4 (0.13–1.3 mM) was added to the perfusate. Each sample of perfusate was assayed for its content of GABA, glutamate, alanine, aspartate, glycine and glutamine by two-dimensional, thin-layer chromatography. The results show that within a circumscribed region of the dorsal hypothalamus, the synthesis of [14C]glycine and [14C]glutamine was enhanced by ethanol and morphine, respectively. Ethanol generally augmented also the synthesis of GABA, glutamate, and glutamine at sites reactive to the compound. Within the same sites, morphine increased the synthesis of glycine. Other amino acids were not significantly different from the control. Thus, anatomically specific and selective changes in amino acid activity are produced within the rat's hypothalamus in response to the localized presence of ethanol or morphine suggesting the involvement of certain amino acids in the action of these addictive compounds within the hypothalamus.  相似文献   

10.
Chollet R 《Plant physiology》1973,51(4):787-792
Photosynthetically active bundle sheath strands capable of assimilating up to 8 micromoles CO2 per milligram chlorophyll per hour have been isolated from fully expanded leaves of Zea mays L. Mesophyll cell contamination of the preparations was negligible, as evidenced by light and electron microscopy and by a high ratio of chlorophyll a to chlorophyll b in the strands. Ribose 5-phosphate markedly stimulated the rate of photosynthetic 14CO2 fixation by the isolated strands. In contrast, both pyruvate and phosphoenolpyruvate had a comparatively small stimulatory effect on bundle sheath 14CO2 fixation. After 5 minutes of photosynthesis in 14C-bicarbonate, 95% of the incorporated 14C was found in compounds other than C4-dicarboxylic acids, most notably in 3-phosphoglycerate and sugar phosphates. A similar distribution of 14C was observed in the presence of exogenous ribose 5-phosphate. Extracts of bundle sheath strands contained high specific activities of “malic” enzyme, phosphoglycolate phosphatase, hydroxypyruvate reductase, and ribulose 1,5-diphosphate carboxylase, whereas the specific activities of NADP+-malate dehydrogenase and phosphopyruvate carboxylase were extremely low. These results indicate that the Calvin cycle occurs in the bundle sheath cells of maize.  相似文献   

11.
Extracts of Pseudomonas C grown on methanol as sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts.The addition of d-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when d-ribulose 5-phosphate was present in the assay mixtures.The amount of radioactivity found in CO2, was 6.8-times higher when extracts of methanol-grown Pseudomona C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate.These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

12.
Incubating white matter membranes with UDP-N-acetyl-[14C]glucosamine in the presence of Mg2+ and AMP resulted in the labeling of two major glycolipids, a minor glycolipid and several membrane-associated glycoproteins. The addition of AMP protected the labeled sugar nucleotide from degradation by a membrane-bound sugar nucleotide pyrophosphatase activity. While no labeled oligosaccharide lipid was recovered in a CHCl3CH3OHH2O (10:10:3) extract after incubating with only UDP-N-acetyl-[14C] glucosamine, Mg2+, and AMP, the inclusion of unlabeled GDP-mannose led to the formation of an N-acetyl-[14C]glucosamine-labeled oligosaccharide lipid that was soluble in CHCl3CH3OHH2O (10:10:3). The [GlcNAc-14C]oligosaccharide unit was released by treatment with 0.1 N HCl in 80% tetrahydrofuran at 50 °C for 30 min and appears to have the same molecular size as the lipid-linked [mannose-14C] oligosaccharide, formed enzymatically by white matter membranes as judged by their elution behavior on Bio-Gel P-6. The incorporation of N-acetyl-[14C]glucosamine into glycolipid was stimulated by exogenous dolichol monophosphate, but inhibited by UMP or tunicamycin, a glucosamine-containing antibiotic. Although UMP and tunicamycin drastically inhibited the labeling of glycolipid, these compounds had very little effect on the labeling of glycoproteins. The major glycolipids have the chemical and Chromatographic characteristics of N-acetylglucosaminylpyrophosphoryldolichol and N,N′-diacetylchitobiosylpyrophosphoryldolichol. When the labeled glycoproteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, four labeled polypeptides were observed, having apparent molecular weights of 145,000, 105,000, 54,000, and 35,000. Virtually all of the N-acetyl-[14C]glucosamine was released when the labeled glycopeptides, produced by pronase digestion, were incubated with an exo-β-N-acetylglucosaminidase, indicating that all of the N-acetyl-[14C]glucosamine incorporated under these conditions is attached to white matter membrane glycoproteins at nonreducing termini.  相似文献   

13.
1. Rats were injected with [U-14C]glucose and the content of 14C in proteins and lipids of the cerebral P1 (`nuclear'), P2 (`mitochondrial'), P3 (`microsomal') and high-speed supernatant fractions was measured 7, 22 and 93hr. after injection of labelled glucose. 2. The crude brain mitochondrial fractions (P2) were subfractionated on continuous sucrose gradients (0·32–1·8m-sucrose) and the 14C content of the proteins and lipids of about 20 subfractions was measured. 3. About 40–50% of the 14C assimilated by brain proteins was found in the P2 (`mitochondrial') fraction. About 68–70% of the 14C assimilated by brain lipids was also recovered from the lipids of the P2 fraction. 4. Between 22 and 93hr. after injection of [U-14C]glucose both the amount of 14C in the protein of the P2 (`mitochondrial') fraction and the specific activity of this protein increased. The specific activity of the protein of all other particulate fractions (P1, P2 and P3) and subfractions (obtained from sucrose-density-gradient subfractionation of fraction P2) when related to the specific activity of the high-speed supernatant protein also increased during 93hr. after injection of [U-14C]glucose. The amount of 14C in the protein of the high-speed supernatant and the specific activity of this protein decreased during the same period. 5. The distribution of 14C in the lipids of all subcellular particulate fractions remained unchanged during the period 22–93hr. after injection of [U-14C]glucose. 6. It was concluded that a diffusion occurs of some supernatant proteins into subcellular particulate matter of the cerebrum and no significant preference for any subcellular particulate matter was observed. The lipids occur in the cerebrum mainly in a non-diffusible state, which is consistent with the view that they form almost entirely a part of the structure of the cerebrum. 7. The data obtained do not lend further support to the concept of axoplasmic flow within the cerebrum or the concept of a one-directional flow of mitochondria or other subcellular particles within the cerebrum.  相似文献   

14.
A new microarray method, the isotope array approach, for identifying microorganisms which consume a 14C-labeled substrate within complex microbial communities was developed. Experiments were performed with a small microarray consisting of oligonucleotide probes targeting the 16S rRNA of ammonia-oxidizing bacteria (AOB). Total RNA was extracted from a pure culture of Nitrosomonas eutropha grown in the presence of [14C]bicarbonate. After fluorescence labeling of the RNA and microarray hybridization, scanning of all probe spots for fluorescence and radioactivity revealed that specific signals were obtained and that the incorporation of 14C into rRNA could be detected unambiguously. Subsequently, we were able to demonstrate the suitability of the isotope array approach for monitoring community composition and CO2 fixation activity of AOB in two nitrifying activated-sludge samples which were incubated with [14C]bicarbonate for up to 26 h. AOB community structure in the activated-sludge samples, as predicted by the microarray hybridization pattern, was confirmed by quantitative fluorescence in situ hybridization (FISH) and comparative amoA sequence analyses. CO2 fixation activities of the AOB populations within the complex activated-sludge communities were detectable on the microarray by 14C incorporation and were confirmed independently by combining FISH and microautoradiography. AOB rRNA from activated sludge incubated with radioactive bicarbonate in the presence of allylthiourea as an inhibitor of AOB activity showed no incorporation of 14C and thus was not detectable on the radioactivity scans of the microarray. These results suggest that the isotope array can be used in a PCR-independent manner to exploit the high parallelism and discriminatory power of microarrays for the direct identification of microorganisms which consume a specific substrate in the environment.  相似文献   

15.
The direct incorporation of 15NH4Cl into amino acids in illuminated spinach (Spinacia oleracea L.) chloroplasts in the presence of 2-oxoglutarate plus malate was determined. The amido-N of glutamine was the most highly labeled N-atom during 15NH4 assimilation in the presence of malate. In 4 minutes the 15N-label of the amido-N of glutamine was 37% enriched. In contrast, values obtained for both the N-atom of glutamate and the amino-N of glutamine were only about 20% while that of the N-atom of aspartate was only 3%. The addition of malate during the assimilation of 15NH4Cl and Na15NO2 greatly increased the 15N-label into glutamine but did not qualitatively change the order of the incorporation of 15N-label into all the amino acids examined. This evidence indicates the direct involvement of the glutamine synthetase/glutamate synthase pathway for ammonia and nitrite assimilation in isolated chloroplasts. The addition of malate or succinate during ammonia assimilation also led to more than 3-fold increase in [14C]2-oxoglutarate transport into the chloroplast as well as an increase in the export of [14C]glutamate out of the chloroplast. Little [14C]glutamine was detected in the medium of the chloroplast preparations. The stimulation of 15N-incorporation and [14C]glutamate export by malate could be directly attributed to the increase in 2-oxoglutarate transport activity (via the 2-oxoglutarate translocator) observed in the presence of exogenous malate.  相似文献   

16.
The nature of binding between manganese ions and morphine was studied using Fourier transform proton nuclear magnetic resonance techniques. Proton relaxation times in the presence of Mn(II) ions were determined together with their temperature dependence. Slow exchange conditions were observed for the NCH3 group, while fast exchange conditions applied for all the other protons. The rotational correlation time of the complex was approximated by that of the free morphine molecule, as measured by selective and nonselective proton relaxation rate measurements. The distances between the metal ion and proton nuclei of morphine were evaluated on the basis of an association constant, measured from water proton spin-lattice relaxation rate binding studies. The results indicate that the metal binds directly to the two oxydryls with Kass = 9.7 × 10?3.The rate constant for the interaction of Mn(II) with the opiate is 2.25 × 104 sec?1 at 27°C, as determined from the temperature dependence of longitudinal relaxation rate of the NCH3 group.  相似文献   

17.
Intact caeca of the marine borer, Bankia setacea (Tryon), were incubated in vitro with (1-14C)- and (6-14C)-glucose. The specific yields of 14CO2 from (1-14C)- and (6-14C)-glucose were found to be 9 and 1% respectively. From these values the contribution of the pentose cycle to the overall glucose metabolism was calculated as 3%. Glucose is catabolized mainly via the Embden-Meyerhof pathway.  相似文献   

18.
14C-Labeled 2-carboxyarabinitol-1,5-bisphosphate was bound to both nonactivated and CO2and Mg2+ activated forms of ribulose bisphosphate carboxylase/oxygenase. The complex could be precipitated with 20% polyethylene glycol and 20 mm MgCl2 for quantitation of the moles of the affinity label bound per mole of enzyme. The [14C]carboxyarabinitol-P2 bound to the nonactivated enzyme could be exchanged with a 100-fold excess of the unlabeled compound. With the activated enzyme the binding of [14C]carboxyarabinitol-P2 was so tight that it did not exchange with the unlabeled compound and a binding stoichiometry of one molecule per active site was assumed. This tight binding was dependent upon pretreatment of the enzyme with both CO2 and MgCl2 in the same manner that enzyme activation depended on CO2 and Mg2+ concentrations. Various enzyme preparations from spinach leaves tightly bound [14C]carboxyarabinitol-P2 in proportion to their specific activities. By extrapolating to a maximum binding of 8 mol of [14C]carboxyarabinitol-P2 per mole of this A8B8 enzyme a theoretical specific activity of 2.8 μmol · min?1 · mg protein?1 was indicated. Enzyme preparations purified from spinach leaves generally have a specific activity in the range of 1.0 to 2.3.  相似文献   

19.
The cyanobacterium (blue-green alga) Synechococcus 6301 incorporated a large amount of isotope from [1-14C] and [2-14C]acetate into phaeophorbide a obtained from chlorophyll a and into glutamatein cell protein; very little radioactivity was present in aspartate in cell protein. This distribution of isotope indicates that aspartate and the tetrapyrrole of chlorophyll a are not derived from a common C4, precursor. The ratios of the specific radioactivities of phaeophorbide a to glutamate for organisms grown in the presence of 1-14C] and [2-4C ] acetate were 2.5:1 and 10:1 respectively. These are close to the theoretical values for the C5, route to δ-aminolaevulinate which indicates that this is the only pathway to the tetrapyrrole precursor in Synechococcus 6301.  相似文献   

20.
In addition to chlorophyll-protein complexes, other proteins were labeled when isolated developing pea (Pisum sativum L.) chloroplasts were incubated with [14C]-5-aminolevulinic acid. The major labeled band (Mr = 43 kilodaltons by lithium dodecyl sulfate-polyacrylamide gel electrophoresis) was labeled even in the presence of chloramphenicol. Heme-dependent peroxidase activity (as detected by the tetramethyl benzidine-H2O2 stain) was not visibly associated with this band. The radioactive band was stable to heat, 5% HCl in acetone, and was absent if the incubation with [14C]-5-aminolevulinic acid was carried out in the presence of N-methyl protoporphyrin IX dimethyl ester (a specific inhibitor of ferrochelatase). Organic solvent extraction procedures for the enrichment of cytochrome f from chloroplast membranes also extracted this unknown labeled product. It was concluded that this labeled product was probably a c-type cytochrome; however, the possibility that it might be a protein containing a covalently linked linear tetrapyrrole was not ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号