首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
L ‐Homophenylalanine (L ‐HPA) and N6‐protected‐2‐oxo‐6‐amino‐hexanoic acid (N6‐protected‐OAHA) can be used as building blocks for the manufacture of angiotensin‐converting enzyme inhibitors. To synthesize L ‐HPA and N6‐protected‐OAHA simultaneously from 2‐oxo‐4‐phenylbutanoic acid (OPBA) and N6‐protected‐L ‐lysine, several variants of Escherichia coli aspartate aminotransferase (AAT) were developed by site‐directed mutagenesis and their catalytic activities were investigated. Three kinds of N6‐protected‐L ‐lysine were tested as potential amino donors for the bioconversion process. AAT variants of R292E/L18H and R292E/L18T exhibited specific activities of 0.70±0.01 U/mg protein and 0.67±0.02 U/mg protein to 2‐amino‐6‐tert‐butoxycarbonylamino‐hexanoic acid (BOC‐lysine) and 2‐amino‐6‐(2,2,2‐trifluoro‐acetylamino)‐hexanoic acid, respectively. E. coli cells expressing R292E/L18H variant were able to convert OPBA and BOC‐lysine to L ‐HPA and 2‐oxo‐6‐tert‐butoxycarbonylamino‐hexanoic acid (BOC‐OAHA) with 96.2% yield in 8 h. This is the first report demonstrating a process for the simultaneous production of two useful building blocks, L ‐HPA and BOC‐OAHA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

2.
L ‐Lysine is a potential feedstock for the production of bio‐based precursors for engineering plastics. In this study, we developed a microbial process for high‐level conversion of L ‐lysine into 5‐aminovalerate (5AVA) that can be used as a monomer in nylon 6,5 synthesis. Recombinant Escherichia coli WL3110 strain expressing Pseudomonas putida delta‐aminovaleramidase (DavA) and lysine 2‐monooxygenase (DavB) was grown to high density in fed‐batch culture and used as a whole cell catalyst. High‐density E. coli WL3110 expressing DavAB, grown to an optical density at 600 nm (OD600) of 30, yielded 36.51 g/L 5AVA from 60 g/L L ‐lysine in 24 h. Doubling the cell density of E. coli WL3110 improved the conversion yield to 47.96 g/L 5AVA from 60 g/L of L ‐lysine in 24 h. 5AVA production was further improved by doubling the L ‐lysine concentration from 60 to 120 g/L. The highest 5AVA titer (90.59 g/L; molar yield 0.942) was obtained from 120 g/L L ‐lysine by E. coli WL3110 cells grown to OD600 of 60. Finally, nylon 6,5 was synthesized by bulk polymerization of ?‐caprolactam and δ‐valerolactam prepared from microbially synthesized 5AVA. The hybrid system demonstrated here has promising possibilities for application in the development of industrial bio‐nylon production processes.  相似文献   

3.
d ‐Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, poly‐d ‐lactic acid . In this study, Lactobacillus coryniformis subsp. torquens, was evaluated for its ability to produce d ‐lactic acid using Dried Distiller's Grains with Solubles (DDGS) hydrolysate as the substrate. DDGS was first subjected to alkaline pretreatment with sodium hydroxide to remove the hemicellulose component and the generated carbohydrate‐rich solids were then subjected to enzymatic hydrolysis using cellulase mixture Accellerase® 1500. When comparing separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) of L. coryniformis on DDGS hydrolysate, the latter method demonstrated higher d ‐lactic acid production (27.9 g/L, 99.9% optical purity of d ‐lactic acid), with a higher glucose to d ‐lactic acid conversion yield (84.5%) compared to the former one (24.1 g/L, 99.9% optical purity of d ‐lactic acid). In addition, the effect of increasing the DDGS concentration in the fermentation system was investigated via a fed‐batch SSF approach, where it was shown that the d ‐lactic acid production increased to 38.1 g/L and the conversion yield decreased to 70%. In conclusion, the SSF approach proved to be an efficient strategy for the production of d ‐lactic acid from DDGS as it reduced the overall processing time and yielded high d ‐lactic acid concentrations.  相似文献   

4.
β‐poly(l ‐malic acid) (PMLA) is a biopolyester, which has attracted growing attention due to its potential applications in medicine and other industries. In this study, the biosynthetic pathway of PMLA and the fermentation strategies with mixed sugars were both investigated to enhance PMLA production by Aureobasidium pullulans ipe‐1. Metabolic intermediates and inhibitors were used to study the biosynthetic pathway of PMLA. It showed that exogenous addition of l ‐malic acid, succinic acid, TFA, and avidin had negligible effect on PMLA production, while pyruvic acid and biotin were the inhibitors, indicating that PMLA biosynthesis was probably related to phosphoenolpyruvate via oxaloacetate catalyzed by phosphoenolpyruvate carboxylase. Sucrose was suitable for achieving the highest PMLA concentration, while fructose generated a higher yield of PMLA (PMLA produced per biomass). Furthermore, the fed‐batch culture using fed solution with different sugar mixture for PMLA production was implemented. During the fed‐batch culture with mixed solution, fructose could increase PMLA production. Compared with the batch culture, the feeding with mixed sugar (sucrose and glucose) increased PMLA concentration by 23.9%, up to 63.2 g/L, and the final volume of the broth was increased by 25%. These results provide a good reference for process development and optimization of PMLA production.  相似文献   

5.
Through metabolic pathway engineering, novel microbial biocatalysts can be engineered to convert renewable resources into useful chemicals, including monomer building‐blocks for bioplastics production. Here we describe the systematic engineering of Escherichia coli to produce, as individual products, two 5‐carbon polyamide building blocks, namely 5‐aminovalerate (AMV) and glutarate. The modular pathways were derived using “parts” from the natural lysine degradation pathway of Pseudomonas putida KT2440. Endogenous over‐production of the required precursor, lysine, was first achieved through metabolic deregulation of its biosynthesis pathway by introducing feedback resistant mutants of aspartate kinase III and dihydrodipicolinate synthase. Further disruption of native lysine decarboxylase activity (by deleting cadA and ldcC) limited cadaverine by‐product formation, enabling lysine production to 2.25 g/L at a glucose yield of 138 mmol/mol (18% of theoretical). Co‐expression of lysine monooxygenase and 5‐aminovaleramide amidohydrolase (encoded by davBA) then resulted in the production of 0.86 g/L AMV in 48 h. Finally, the additional co‐expression of glutaric semialdehyde dehydrogenase and 5‐aminovalerate aminotransferase (encoded by davDT) led to the production of 0.82 g/L glutarate under the same conditions. At this output, yields on glucose were 71 and 68 mmol/mol for AMV and glutarate (9.5 and 9.1% of theoretical), respectively. These findings further expand the number and diversity of polyamide monomers that can be derived directly from renewable resources. Biotechnol. Bioeng. 2013; 110: 1726–1734. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Poly(γ‐glutamic acid) (γ‐PGA) is a promising biopolymer with many potential industrial and pharmaceutical applications. To reduce the production costs, the effects of yeast extract and L ‐glutamate in the substrate for γ‐PGA production were investigated systematically at shake flask scale. The results showed that lower concentrations of yeast extract (40 g/L) and L ‐glutamate (30 g/L) were beneficial for the cost‐effective production of γ‐PGA in the formulated medium. By maintaining the glucose concentration in the range of 3–10 g/L via a fed‐batch strategy in a 10‐L fermentor, the production of γ‐PGA was greatly improved with the highest γ‐PGA concentration of 101.1 g/L, a productivity of 2.19 g/L·h and a yield of 0.57 g/g total substrate, which is about 1.4‐ to 3.2‐fold higher than those in the batch fermentation. Finally, this high‐density fermentation process was successfully scaled up in a 100‐L fermentor. The present work provides a powerful approach to produce this biopolymer as a bulk chemical in large scale.  相似文献   

7.
8.
The aim of this study was to improve l ‐lactic acid production of Lactobacillus thermophilus SRZ50. For this purpose, high efficient heavy‐ion mutagenesis technique was performed using SRZ50 as the original strain. To enhance the screening efficiency for high yield l ‐lactic acid producers, a scale‐down from shake flask to microtiter plate was developed. The results showed that 24‐well U‐bottom MTPs could well alternate shake flasks for L. thermophilus cultivation as a scale‐down tool due to its a very good comparability to the shake flasks. Based on this microtiter plate screening method, two high l ‐lactic acid productivity mutants, A59 and A69, were successfully screened out, which presented, respectively, 15.8 and 16.2% higher productivities than that of the original strain. Based on fed‐batch fermentation, the A69 mutant can accumulate 114.2 g/L l ‐lactic acid at 96 h. Hence, the proposed traditional microbial breeding method with efficient high‐throughput screening assay was proved to be an appropriate strategy to obtain lactic acid‐overproducing strain.  相似文献   

9.
4‐Hydroxyisoleucine, a promising drug, has mainly been applied in the clinical treatment of type 2 diabetes in the pharmaceutical industry. l ‐Isoleucine hydroxylase specifically converts l‐ Ile to 4‐hydroxyisoleucine. However, due to its poor thermostability, the industrial production of 4‐hydroxyisoleucine has been largely restricted. In the present study, the disulfide bond in l ‐isoleucine hydroxylase protein was rationally designed to improve its thermostability to facilitate industrial application. The half‐life of variant T181C was 4.03 h at 50°C, 10.27‐fold the half‐life of wild type (0.39 h). The specific enzyme activity of mutant T181C was 2.42 ± 0.08 U/mg, which was 3.56‐fold the specific enzyme activity of wild type 0.68 ± 0.06 U/mg. In addition, molecular dynamics simulation was performed to determine the reason for the improvement of thermostability. Based on five repeated batches of whole‐cell biotransformation, Bacillus subtilis 168/pMA5‐idoT181C recombinant strain produced a cumulative yield of 856.91 mM (126.11 g/L) 4‐hydroxyisoleucine, which is the highest level of productivity reported based on a microbial process. The results could facilitate industrial scale production of 4‐hydroxyisoleucine. Rational design of disulfide bond improved l ‐isoleucine hydroxylase thermostability and may be suitable for protein engineering of other hydroxylases.  相似文献   

10.
Productivity enhancements with mixed carbon sources are usually accompanied by simultaneous improvement of cell growth. However, whether the enhanced cell growth in mixed carbon sources influences the biochemical productivity of ε‐poly‐l ‐lysine (ε‐PL) still remains unclear. In this study, we investigated the effect of growth rate on the ε‐PL productivity in a glucose–glycerol mixed carbon source. Based on the typical ε‐PL fed batch fermentation, chemostat culture and relevant physiological analyses were carried out. The ε‐PL productivity was positively correlated to the growth rate ranging from 0.02 to 0.06 h?1. The primary metabolism activity was enhanced at higher growth rate, providing sufficient precursor l ‐lysine and energy for ε‐PL production. Meanwhile, these two key elements were equally important for biomass production, which could be quickly produced when the cells were fast growing. In addition, rapid growth also strengthened the antioxidant capacity of cells to defend potential oxidative stress. The positive correlation between the growth rate and ε‐PL productivity indicated that the improvement of ε‐PL productivity in the mixed carbon source was partly attributed to the simultaneously enhanced cell growth. Information obtained may provide references for further studies on other secondary biochemicals’ production using mixed carbon sources.  相似文献   

11.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

12.
Glutathione (GSH), an important tripeptide compound, is widely used as a therapeutic and in the food and cosmetic industries. To improve its production yield, we added the antibiotic nystatin to a batch fermentation of Saccharomyces cerevisiae, at different concentrations and at various times. Based on the results that nystatin can effectively stimulate GSH accumulation but at the same time inhibits cell growth, a three‐point addition strategy (0.05 mg/L at 8 h, 0.25 mg/L at 16 h, and 0.5 mg/L at 20 h) was developed to maximize GSH production. As a result, a maximum yield of 237.8 mg/L was obtained, which was by 50.6% higher than without the addition of nystatin. When combining this strategy with cysteine addition, the GSH yield increased to 278.9 mg/L. Subsequently, the γ‐glutamylcysteine synthetase (γ‐GCS) activity and K+ concentration were analyzed to investigate the possible mechanism involved in the increased production. It was found that the nystatin‐induced increase in the GSH yield was associated with a higher γ‐GCS activity and K+ concentration.  相似文献   

13.
Yarrowia lipolytica is able to secrete large amounts of citric acid (CA), which is greatly affected by the dissolved oxygen concentration (DOC) in the fermentation medium. In this study, oleic acid was selected as oxygen‐vector to improve DOC during CA fermentation. When 2% (v/v) of oleic acid was added to the culture broth, higher DOC (>42.1%) was determined throughout the CA synthesis phase. The yield of CA reached a maximum of 32.1 g/L (25.4% higher than the control) and the biomass was 8.8 g/L. The substrate uptake rate, products formation rate and key enzyme activities were also determined, and the results indicated that CA synthesis was strengthened with oleic acid addition. Furthermore, it was detected that oleic acid could be assimilated by the cells, which means that oleic acid could be served both as oxygen‐vector and co‐substrate for CA synthesis by Y. lipolytica. In a bioreactor with working volume of 3 L, the highest concentration of CA reached to 36. 4 g/L in the presence of 2% (v/v) oleic acid after 192 h of fermentation. These results confirmed that oleic acid could be applied in the large‐scale production of CA by Y. lipolytica.  相似文献   

14.

Aims

To increase the l ‐isoleucine production in Corynebacterium glutamicum by overexpressing the global regulator Lrp and the two‐component export system BrnFE.

Methods and Results

The brnFE operon and the lrp gene were cloned into the shuttle vector pDXW‐8 individually or in combination. The constructed plasmids were transformed into an l ‐isoleucine‐producing strain C. glutamicum JHI3‐156, and the l ‐isoleucine production in these different strains was analysed and compared. More l ‐isoleucine was produced when only Lrp was expressed than when only BrnFE was expressed. Significant increase in l ‐isoleucine production was observed when Lrp and BrnFE were expressed in combination. Compared to the control strain, l ‐isoleucine production in JHI3‐156/pDXW‐8‐lrpbrnFE increased 63% in flask cultivation, and the specific yield of l ‐isoleucine increased 72% in fed‐batch fermentation.

Conclusions

Both Lrp and BrnFE are important to enhance the l ‐isoleucine production in C. glutamicum.

Significance and Impact of the Study

The results provide useful information to enhance l ‐isoleucine or other branched‐chain amino acid production in C. glutamicum.  相似文献   

15.
Rapamycin is a triene macrolide antibiotic produced by Streptomyces hygroscopicus. Besides its wide application as an effective immunosuppressive agent, other important bioactivities have made rapamycin a potential drug lead for novel pharmaceutical development. However, the low titer of rapamycin in the original producer strain limits further industrialization efforts and restricts its use for other applications. Predicated on knowledge of the metabolic pathways related to rapamycin biosynthesis in S. hygroscopicus, we have rationally designed approaches to generate a rapamycin high producer strain of S. hygroscopicus HD‐04‐S. These have included alleviation of glucose repression, improved tolerance towards lysine and shikimic acid, and auxotrophy of tryptophan and phenylalanine through the application of stepwise UV mutagenesis. The resultant strain produced rapamycin at 450 mg/L in the shake flask scale. These fermentations were further scaled up in 120 and 20,000 L fermentors, respectively, at the pilot plant. Selected fermentation factors including agitation speed, pH, and on‐line supplementation were systematically evaluated. A fed‐batch strategy was established to maximize rapamycin production. With these efforts, an optimized fermentation process in the larger scale fermentor was developed. The final titer of rapamycin was 812 mg/L in the 120 L fermentor and 783 mg/L in the 20,000 L fermentor. This work highlights a high rapamycin producing strain derived by mutagenesis and subsequent screening, fermentation optimization of which has now made it feasible to produce rapamycin on an industrial scale by fermentation. The strategies developed here should also be applicable to titer improvement of other important microbial natural products on an industrial scale. Biotechnol. Bioeng. 2010;107: 506–515. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
d ‐lactic acid is of great interest because of increasing demand for biobased poly‐lactic acid (PLA). Blending poly‐l ‐lactic acid with poly‐d ‐lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d ‐lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l ‐lactate‐deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1‐pCU‐PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d ‐lactic acid yield and productivity. d ‐lactic acid (27.3 g L?1) and productivity (0.75 g L?1 h?1) was obtained from corn stover and d ‐lactic acid (22.0 g L?1) and productivity (0.65 g L?1 h?1) was obtained from sorghum stalks using ΔldhL1‐pCU‐PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d ‐lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d ‐lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271–278, 2016  相似文献   

17.
Aims: To evaluate the potential of apple pomace (AP) supplemented with rice husk for hyper citric acid production through solid‐state fermentation by Aspergillus niger NRRL‐567. Optimization of two key parameters, such as moisture content and inducer (ethanol and methanol) concentration was carried out by response surface methodology. Methods and Results: In this study, the effect of two crucial process parameters for solid‐state citric acid fermentation by A. niger using AP waste supplemented with rice husk were thoroughly investigated in Erlenmeyer flasks through response surface methodology. Moisture and methanol had significant positive effect on citric acid production by A. niger grown on AP (P < 0·05). Higher values of citric acid on AP by A. niger (342·41 g kg?1 and 248·42 g kg?1 dry substrate) were obtained with 75% (v/w) moisture along with two inducers [3% (v/w) methanol and 3% (v/w) ethanol] with fermentation efficiency of 93·90% and 66·42%, respectively depending upon the total carbon utilized after 144 h of incubation period. With the same optimized parameters, conventional tray fermentation was conducted. The citric acid concentration of 187·96 g kg?1 dry substrate with 3% (v/w) ethanol and 303·34 g kg?1 dry substrate with 3% (v/w) methanol were achieved representing fermentation efficiency of 50·80% and 82·89% in tray fermentation depending upon carbon utilization after 120 h of incubation period. Conclusions: Apple pomace proved to be the promising substrate for the hyper production of citric acid through solid‐state tray fermentation, which is an economical technique and does not require any sophisticated instrumentation. Significance and Impact of the Study: The study established that the utilization of agro‐industrial wastes have positive repercussions on the economy and will help to meet the increasing demands of citric acid and moreover will help to alleviate the environmental problems resulting from the disposal of agro‐industrial wastes.  相似文献   

18.
β‐Glucosylglycerol (βGG) has potential applications as a moisturizing agent in cosmetic products. A stereochemically selective method of its synthesis is kinetically controlled enzymatic transglucosylation from a suitable donor substrate to glycerol as acceptor. Here, the thermostable β‐glycosidase CelB from Pyrococcus furiosus was used to develop a microstructured immobilized enzyme reactor for production of βGG under conditions of continuous flow at 70°C. Using CelB covalently attached onto coated microchannel walls to give an effective enzyme activity of 30 U per total reactor working volume of 25 µL, substrate conversion and formation of transglucosylation product was monitored in dependence of glucosyl donor (2‐nitrophenyl‐β‐D ‐glucoside (oNPGlc), 3.0 or 15 mM; cellobiose, 250 mM), the concentration of glycerol (0.25–1.0 M), and the average residence time (0.2–90 s). Glycerol caused a concentration‐dependent decrease in the conversion of the glucosyl donor via hydrolysis and strongly suppressed participation of the substrate in the reaction as glucosyl acceptor. The yields of βGG were ≥80% and ≈60% based on oNPGlc and cellobiose converted, respectively, and maintained up to near exhaustion of substrate (≥80%), giving about 120 mM (30 g/L) of βGG from the reaction of cellobiose and 1 M glycerol. The structure of the transglucosylation products, 1‐O‐β‐D ‐glucopyranosyl‐rac‐glycerol (79%) and 2‐O‐β‐D ‐glucopyranosyl‐sn‐glycerol (21%), was derived from NMR analysis of the product mixture of cellobiose conversion. The microstructured reactor showed conversion characteristics similar to those for a batchwise operated stirred reactor employing soluble CelB. The advantage of miniaturization to the microfluidic format lies in the fast characterization of full reaction time courses for a range of process conditions using only a minimum amount of enzyme. Biotechnol. Bioeng. 2009;103: 865–872. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
The development of a biomimetic surface able to promote endothelialization is fundamental in the search for blood vessel substitutes that prevent the formation of thrombi or hyperplasia. This study aims at investigating the effect of functionalization of poly‐ε‐caprolactone or poly(L‐lactic acid‐co‐?‐caprolactone) electrospun scaffolds with a photoreactive adhesive peptide. The designed peptide sequence contains four Gly‐Arg‐Gly‐Asp‐Ser‐Pro motifs per chain and a p‐azido‐Phe residue at each terminus. Different peptide densities on the scaffold surface were obtained by simply modifying the peptide concentration used in pretreatment of the scaffold before UV irradiation. Scaffolds of poly‐ε‐caprolactone embedded with adhesive peptides were produced to assess the importance of peptide covalent grafting. Our results show that the scaffolds functionalized with photoreactive peptides enhance adhesion at 24 h with a dose‐dependent effect and control the proliferation of human umbilical vein endothelial cells, whereas the inclusion of adhesive peptide in the electrospun matrices by embedding does not give satisfactory results. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Ketogulonicigenium vulgare WSH‐001 is an industrial strain used for vitamin C production. Based on genome sequencing and pathway analysis of the bacterium, some of its potential pyrroloquinoline quinone (PQQ)‐dependent dehydrogenases were predicted, including KVU_pmdA_0245, KVU_2142, KVU_2159, KVU_1366, KVU_0203, KVU_0095, and KVU_pmdB_0115. BLAST and function domain searches showed that enzymes encoded by these genes may act as putative PQQ‐dependent L ‐sorbose dehydrogenases (SDH) or L ‐sorbosone dehydrogenases (SNDH). To validate whether these dehydrogenases are PQQ‐dependent or not, these seven putative dehyrogenases were overexpressed in Escherichia coli BL21 (DE3) and purified for characterization. Biochemical and kinetic characterization of the purified proteins have led to the identification of seven enzymes that possess the ability to oxidize L ‐sorbose or L ‐sorbosone to varying degrees. In addition, the dehydrogenation of sorbose in K. vulgare is validated to be PQQ dependent, identification of these PQQ‐dependent dehydrogenases expanded the PQQ‐dependent dehydrogenase family. Besides, the optimal combination of enzymes that could more efficiently catalyze the conversion of sorbose to gulonic acid was proposed. These are important in supporting the development of metabolic engineering strategies and engineering of efficient strains for one‐step production of vitamin C in the future. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1398–1404, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号