首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the chemotaxis of Escherichia coli, polar clustering of the chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW is thought to be involved in signal amplification and adaptation. However, the mechanism that leads to the polar localization of the receptor is still largely unknown. In this study, we examined the effect of receptor covalent modification on the polar localization of the aspartate chemoreceptor Tar fused to green fluorescent protein (GFP). Amidation (and presumably methylation) of Tar-GFP enhanced its own polar localization, although the effect was small. The slight but significant effect of amidation on receptor localization was reinforced by the fact that localization of a noncatalytic mutant version of GFP-CheR that targets to the C-terminal pentapeptide sequence of Tar was similarly facilitated by receptor amidation. Polar localization of the demethylated version of Tar-GFP was also enhanced by increasing levels of the serine chemoreceptor Tsr. The effect of covalent modification on receptor localization by itself may be too small to account for chemotactic adaptation, but receptor modification is suggested to contribute to the molecular assembly of the chemoreceptor/histidine kinase array at a cell pole, presumably by stabilizing the receptor dimer-to-dimer interaction.  相似文献   

2.
In Escherichia coli, the aerotaxis receptor Aer is an atypical receptor because it senses intracellular redox potential. The Aer sensor is a cytoplasmic, N-terminal PAS domain that is tethered to the membrane by a 47-residue F1 linker. Here we investigated the function, topology, and orientation of F1 by employing random mutagenesis, cysteine scanning, and disulfide cross-linking. No native residue was obligatory for function, most deleterious substitutions had radically different side chain properties, and all F1 mutants but one were functionally rescued by the chemoreceptor Tar. Cross-linking studies were consistent with the predicted α-helical structure in the N-terminal F1 region and demonstrated trigonal interactions among the F1 linkers from three Aer monomers, presumably within trimer-of-dimer units, as well as binary interactions between subunits. Using heterodimer analyses, we also demonstrated the importance of arginine residues near the membrane interface, which may properly anchor the Aer protein in the membrane. By incorporating these data into a homology model of Aer, we developed a model for the orientation of the Aer F1 and PAS regions in an Aer lattice that is compatible with the known dimensions of the chemoreceptor lattice. We propose that the F1 region facilitates the orientation of PAS and HAMP domains during folding and thereby promotes the stability of the PAS and HAMP domains in Aer.  相似文献   

3.
Bacterial chemoreceptors signal across the membrane by conformational changes that traverse a four-helix transmembrane domain. High-resolution structures are available for the chemoreceptor periplasmic domain and part of the cytoplasmic domain but not for the transmembrane domain. Thus, we constructed molecular models of the transmembrane domains of chemoreceptors Trg and Tar, using coordinates of an unrelated four-helix coiled coil as a template and the X-ray structure of a chemoreceptor periplasmic domain to establish register and positioning. We tested the models using the extensive data for cross-linking propensities between cysteines introduced into adjacent transmembrane helices, and we found that many aspects of the models corresponded with experimental observations. The one striking disparity, the register of transmembrane helix 2 (TM2) relative to its partner transmembrane helix 1, could be corrected by sliding TM2 along its long axis toward the periplasm. The correction implied that axial sliding of TM2, the signaling movement indicated by a large body of data, was of greater magnitude than previously thought. The refined models were used to assess effects of inter-helical disulfides on the two ligand-induced conformational changes observed in alternative crystal structures of periplasmic domains: axial sliding within a subunit and subunit rotation. Analyses using a measure of disulfide potential energy provided strong support for the helical sliding model of transmembrane signaling but indicated that subunit rotation could be involved in other ligand-induced effects. Those analyses plus modeled distances between diagnostic cysteine pairs indicated a magnitude for TM2 sliding in transmembrane signaling of several angstroms.  相似文献   

4.
Conditional inversion of the thermoresponse in Escherichia coli.   总被引:8,自引:7,他引:1       下载免费PDF全文
Mutants in Escherichia coli having defects in one of the methyl-accepting chemotaxis proteins, Tsr protein, which is the chemoreceptor and transducer for L-serine, showed a reduced but similar type of thermoresponse compared with wild-type strains; the cells showed smooth swimming upon temperature increase and tumbling upon temperature decrease. However, when the mutant cells were adapted to attractants such as L-aspartate and maltose, which are specific to another methyl-accepting chemotaxis protein, Tar protein, the direction of the thermoresponse was found to be inverted; a temperature increase induced tumbling and a temperature decrease induced smooth swimming. Consistent with this, the mutant cells showed inverted changes in the methylation level of Tar protein upon temperature changes. Wild-type strains but not Tar protein-deficient mutants exhibited the inverted thermoresponse when the cells were simultaneously adapted to L-aspartate and L-serine, indicating that Tar protein has a key role in the inversion of the thermoresponse. Thus, besides Tsr protein, Tar protein has a certain role in thermoreception. A simple model for thermoreception and inversion of the thermoresponse is also discussed.  相似文献   

5.
The maltose chemoreceptor in Escherichia coli consists of the periplasmic maltose-binding protein (MBP) and the Tar signal transducer, which is localized in the cytoplasmic membrane. We previously isolated strains containing malE mutations that cause specific defects in the chemotactic function of MBP. Four of these mutations have now been characterized by DNA sequence analysis. Two of them replace threonine at residue 53 of MBP with isoleucine (MBP-TI53), one replaces an aspartate at residue 55 with asparagine (MBP-DN55), and the fourth replaces threonine at residue 345 with isoleucine (MBP-TI345). The chemotactic defects of MBP-TI53 and MBP-DN55, but not of MBP-TI345, are suppressed by mutations in the tar gene. Of the tar mutations, the most effective suppressor (isolated independently three times) replaces Arg-73 of Tar with tryptophan. Two other tar mutations that disrupt the aspartate chemoreceptor function of Tar also suppress the maltose taxis defects associated with MBP-TI53 and MBP-DN55. One of these mutations introduces glutamine at residue 73 of Tar, the other replaces arginine at residue 69 of Tar with cysteine. These results suggest that regions of MBP that include residues 53 to 55 and residue 345 are important for the interaction with Tar. In turn, arginines at residues 69 and 73 of Tar must be involved in the recognition of maltose-bound MBP and/or in the production of the attractant signal generated by Tar in response to maltose-bound MBP.  相似文献   

6.
Aspartate taxis mutants of the Escherichia coli tar chemoreceptor.   总被引:13,自引:8,他引:5       下载免费PDF全文
The Tar protein of Escherichia coli belongs to a family of methyl-accepting inner membrane proteins that mediate chemotactic responses to a variety of compounds. These transmembrane signalers monitor the chemical environment by means of specific ligand-binding sites arrayed on the periplasmic side of the membrane, and in turn control cytoplasmic signals that modulate the flagellar rotational machinery. The periplasmic receptor domain of Tar senses two quite different chemoeffectors, aspartate and maltose. Aspartate is detected through direct binding to Tar molecules, whereas maltose is detected indirectly when complexed with the periplasmic maltose-binding protein. Saturating levels of either aspartate or maltose do not block behavioral responses to the other compound, indicating that the detection sites for these two attractants are not identical. We initiated structure-function studies of these chemoreceptor sites by isolating tar mutants which eliminate aspartate or maltose taxis, while retaining the ability to respond to the other chemoeffector. Mutants with greatly reduced aspartate taxis are described and characterized in this report. When present in single copy in the chromosome, these tar mutations generally eliminated chemotactic responses to aspartate and structurally related compounds, such as glutamate and methionine. Residual responses to these compounds were shifted to higher concentrations, indicating a reduced affinity of the aspartate-binding site in the mutant receptors. Maltose responses in the mutants ranged from 10 to 80% of normal, but had no detectable threshold shifts, indicating that these receptor alterations may have little effect on maltose detection sensitivity. The mutational changes in 17 mutants were determined by DNA sequence analysis. Each mutant exhibited a single amino acid replacement at residue 64, 69, or 73 in the Tar molecule. The wild-type Tar transducer contains arginines at all three of these positions, implying that electrostatic forces may play an important role in aspartate detection.  相似文献   

7.
Hundreds of bacterial chemoreceptors from many species have periplasmic, ligand‐recognition domains of approximately the same size, but little or no sequence identity. The only structure determined is for the periplasmic domain of chemoreceptor Tar from Salmonella and Escherichia coli. Do sequence‐divergent but similarly sized chemoreceptor periplasmic domains have related structures? We addressed this issue for the periplasmic domain of chemoreceptor TrgE from E. coli, which has a low level of sequence similarity to Tar, by combining homology modeling and diagnostic cross‐linking between pairs of introduced cysteines. A homology model of the TrgE domain was created using the homodimeric, four‐helix bundle structure of the TarS domain from Salmonella. In this model, we chose four pairs of positions at which introduced cysteines would be sufficiently close to form disulfides across each of four different helical interfaces. For each pair we chose a second pair, in which one cysteine of the original pair was shifted by one position around the helix and thus would be less favorably placed for disulfide formation. We created genes coding for proteins containing four such pairs of cysteine pairs and investigated disulfide formation in vivo as well as functional consequences of the substitutions and disulfides between neighboring helices. Results of the experimental tests provided strong support for the accuracy of the model, indicating that the TrgE periplasmic domain is very similar to the TarS domain. Diagnostic cross‐linking of paired pairs of introduced cysteines could be applied generally as a stringent test of homology models.  相似文献   

8.
The aspartate chemoreceptor Tar of Escherichia coli serves as a warm sensor that produces attractant and repellent signals upon increases and decreases in temperature, respectively. However, increased levels of methylation of the cytoplasmic domain of Tar resulting from aspartate binding convert Tar to a cold sensor with the opposite signaling behavior. Detailed analyses of the methylation sites, which are located in two separate alpha-helices (MH1 and MH2), have suggested that intra- and/or intersubunit interactions of MH1 and MH2 play a critical role in thermosensing. These interactions may be influenced by binding of aspartate, which could trigger some displacement of MH1 through the second transmembrane region (TM2). As an initial step toward understanding the role of TM2 in thermosensing, we have examined the thermosensing properties of 43 mutant Tar receptors with randomized TM2 sequences (residues 190-210). Among them, we identified one mutant receptor (Tar-I2) that functioned as a cold sensor in the absence of aspartate. This is the first example of attractant-independent inversion of thermosensing in Tar. Further analyses identified the minimal essential divergence from the wild-type Tar sequence (Q191V-W192R-Q193C) required for the inverted response. Thus, displacements of TM2 seem to influence the thermosensing function of Tar.  相似文献   

9.
The Tar protein of Escherichia coli is a chemotactic signal transducer that spans the cytoplasmic membrane and mediates responses to the attractants aspartate and maltose. Aspartate binds directly to Tar, whereas maltose binds to the periplasmic maltose-binding protein, which then interacts with Tar. The Arg-64, Arg-69, and Arg-73 residues of Tar have previously been shown to be involved in aspartate sensing. When lysine residues are introduced at these positions by site-directed mutagenesis, aspartate taxis is disrupted most by substitution at position 64, and maltose taxis is disrupted most by substitution at position 73. To explore the spatial distribution of ligand recognition sites on Tar further, we performed doped-primer mutagenesis in selected regions of the tar gene. A number of mutations that interfere specifically with aspartate taxis (Asp-), maltose taxis (Mal-), or both were identified. Mutations affecting residues 64 to 73 or 149 to 154 in the periplasmic domain of Tar are associated with an Asp- phenotype, whereas mutations affecting residues 73 to 83 or 141 to 150 are associated with a Mal- phenotype. We conclude that aspartate and maltose-binding protein interact with adjacent and partially overlapping regions in the periplasmic domain of Tar to initiate attractant signalling.  相似文献   

10.
Chemoreceptor Trg and osmosensor EnvZ of Escherichia coli share a common transmembrane organization but have essentially unrelated primary structures. We created a hybrid gene coding for a protein in which Trg contributed its periplasmic and transmembrane domains as well as a short cytoplasmic segment and EnvZ contributed its cytoplasmic kinase/phosphatase domain. Trz1 transduced recognition of sugar-occupied, ribose-binding protein by its periplasmic domain into activation of its cytoplasmic kinase/phosphatase domain as assessed in vivo by using an ompC-lacZ fusion gene. Functional coupling of sugar-binding protein recognition to kinase/phosphatase activity indicates shared features of intramolecular signalling in the two parent proteins. In combination with previous documentation of transduction of aspartate recognition by an analogous fusion protein created from chemoreceptor Tar and EnvZ, the data indicate a common mechanism of transmembrane signal transduction by chemoreceptors and EnvZ. Signalling through the fusion proteins implies functional interaction between heterologous domains, but the minimal sequence identity among relevant segments of EnvZ, Tar, and Trg indicates that the link does not require extensive, specific interactions among side chains. The few positions of identity in those three sequences cluster in transmembrane segment 1 and the short chemoreceptor sequence in the cytoplasmic part of the hybrid proteins. These regions may be particularly important in physical and functional coupling. The specific cellular conditions necessary to observe ligand-dependent activation of Trz1 can be understood in the context of the importance of phosphatase control in EnvZ signalling and limitations on maximal receptor occupancy in binding protein-mediated recognition.  相似文献   

11.
Chemoreceptors transmit signals from the environment to the flagellar motors via a histidine kinase that controls the phosphorylation level of the effector protein CheY. The cytoplasmic domain of chemoreceptors is strongly conserved and consists of a long alpha-helical hairpin that forms, in the dimer, a coiled-coil four-helix bundle. Changes in this domain during evolution are characterized by the presence of seven-residue insertions/deletions located symmetrically with respect to the hairpin turn, suggesting that specific interactions between the helices that form the hairpin are required for function. We assessed the impact of seven-residue deletions on the signalling ability and higher-order organization of the serine chemoreceptor from Escherichia coli. Our results indicate that symmetry alterations between the two branches of the cytoplasmic hairpin seriously compromise chemoreceptor function. Shorter functional versions of Tsr with symmetrical deletions form mixed trimers of dimers when coexpressed with Tar, the aspartate receptor of E. coli. However, Tar function in those cells is impaired, suggesting that the length difference between receptors introduces non-functional distortions into the chemoreceptor cluster. This observation is reinforced by the analysis of coexpression of Tar with chemoreceptors from Rhodobacter sphaeroides that naturally belong to a shorter-length class.  相似文献   

12.
Chemotactic responses of Escherichia coli to aspartic acid are initiated by a ternary protein complex composed of Tar (chemoreceptor), CheA (kinase), and CheW (a coupling protein that binds to both Tar and CheA and links their activities). We used a genetic selection based on the yeast two-hybrid assay to identify nine cheW point mutations that specifically disrupted CheW interaction with CheA but not with Tar. We sequenced these single point mutants and purified four of the mutant CheW proteins for detailed biochemical characterizations that demonstrated the weakened affinity of the mutant CheW proteins for CheA, but not for Tar. In the three-dimensional structure of CheW, the positions affected by these mutations cluster on one face of the protein, defining a potential binding interface for interaction of CheW with CheA. We used a similar two-hybrid approach to identify four mutation sites that disrupted CheW binding to Tar. Mapping of these "Tar-sensitive" mutation sites and those from previous suppressor analysis onto the structure of CheW defined an extended surface on a face of the protein that is adjacent to the CheA-binding surface and that may serve as an interface for CheW binding to Tar.  相似文献   

13.
The aspartate chemoreceptor (Tar) of Escherichia coli also serves as a thermosensor, and it is very amenable to genetic and biochemical analysis of the thermosensing mechanism. Its thermosensing properties are controlled by reversible methylation of the cytoplasmic signalling/adaptation domain of the protein. The unmethylated and the fully methylated (aspartate-bound) receptors sense, as attractant stimuli, increases (warm sensor) and decreases (cold sensor) in temperature respectively. To learn more about the mechanism of thermosensing, we replaced the four methyl-accepting glutamyl residues with non-methylatable aspartyl residues in all possible combinations. In a strain defective in both methyltransferase (CheR) and methylesterase (CheB) activities, all of the mutant Tar proteins functioned as warm sensors. To create a situation in which all of the remaining glutamyl residues were methylated, we expressed the mutant proteins in a CheB-defective, CheR-overproducing strain. The fully glutamyl-methylated proteins were designed to mimic the full range of methylation states possible for wild-type Tar. Almost all of the methylated mutant receptors, including those with single glutamyl residues, were cold sensors in the presence of aspartate. Thus, binding of aspartate to Tar and methylation of its single glutamyl residue can invert its temperature-dependent signalling properties.  相似文献   

14.
Maltose-binding protein (MBP), which is encoded by the malE gene, is the maltose chemoreceptor of Escherichia coli, as well as an essential component of the maltose uptake system. Maltose-loaded MBP is thought to initiate a chemotactic response by binding to the tar gene product, the signal transducer Tar, which is also the aspartate chemoreceptor. To study the interaction of MBP with Tar, we selected 14 malE mutants which had specific defects in maltose taxis. Three of these mutants were fully active in maltose transport and produced MBP in normal amounts. The isoelectric points of the MBPs from these three mutants were identical to (malE461 and malE469) or only 0.1 pH unit more basic than (malE454) the isoelectric point of the wild-type protein (pH 5.0). Six of the mutations, including malE454, malE461, and malE469, were mapped in detail; they were located in two regions within malE. We also isolated second-site suppressor mutations in the tar gene that restored maltose taxis in combination with the closely linked malE454 and malE461 mutations but not with the malE469 mutation, which maps in a different part of the gene. This allele-specific suppression confirmed that MBP and Tar interact directly.  相似文献   

15.
In bacteria, several physiological processes once thought to be the products of uniformly dispersed reactions are now known to be highly asymmetric, with some exhibiting interesting geometric localizations. In particular, the cell envelope of Escherichia coli displays a form of subcellular differentiation in which peptidoglycan and outer membrane proteins at the cell poles remain stable for generations while material in the lateral walls is diluted by growth and turnover. To determine if material in the side walls was organized in any way, we labeled outer membrane proteins with succinimidyl ester-linked fluorescent dyes and then grew the stained cells in the absence of dye. Labeled proteins were not evenly dispersed in the envelope but instead appeared as helical ribbons that wrapped around the outside of the cell. By staining the O8 surface antigen of E. coli 2443 with a fluorescent derivative of concanavalin A, we observed a similar helical organization for the lipopolysaccharide (LPS) component of the outer membrane. Fluorescence recovery after photobleaching indicated that some of the outer membrane proteins remained freely diffusible in the side walls and could also diffuse into polar domains. On the other hand, the LPS O antigen was virtually immobile. Thus, the outer membrane of E. coli has a defined in vivo organization in which a subfraction of proteins and LPS are embedded in stable domains at the poles and along one or more helical ribbons that span the length of this gram-negative rod.  相似文献   

16.
Adaptation to persisting stimulation is required for highly sensitive detection of temporal changes of stimuli, and often involves covalent modification of receptors. Therefore, it is of vital importance to understand how a receptor and its cognate modifying enzyme(s) modulate each other through specific protein-protein interactions. In the chemotaxis of Escherichia coli, adaptation requires methylation of chemoreceptors (e.g. Tar) catalyzed by the CheR methyltransferase. CheR binds to the C-terminal NWETF sequence of a chemoreceptor that is distinct from the methylation sites. However, little is known about how CheR recognizes its methylation sites or how it is distributed in a cell. In this study, we used comparative genomics to demonstrate that the CheR chemotaxis methyltransferase contains three structurally and functionally distinct modules: (i) the catalytic domain common to a methyltransferase superfamily; (ii) the N-terminal domain; and (iii) the beta-subdomain of the catalytic domain, both of which are found exclusively in chemotaxis methyltransferases. The only evolutionary conserved motif specific to CheR is the positively charged face of helix alpha2 in the N-terminal domain. The disulfide cross-linking analysis suggested that this face interacts with the methylation helix of Tar. We also demonstrated that CheR localizes to receptor clusters at cell poles via interaction of the beta-subdomain with the NWETF sequence. Thus, the two chemotaxis-specific modules of CheR interact with distinct regions of the chemoreceptor for targeting to the receptor cluster and for recognition of the substrate sites, respectively.  相似文献   

17.
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.  相似文献   

18.
In this study, we have analyzed the association of the Sec1p interacting protein Mso1p with the membrane fusion machinery in yeast. We show that Mso1p is essential for vesicle fusion during prospore membrane formation. Green fluorescent protein-tagged Mso1p localizes to the sites of exocytosis and at the site of prospore membrane formation. In vivo and in vitro experiments identified a short amino-terminal sequence in Mso1p that mediates its interaction with Sec1p and is needed for vesicle fusion. A point mutation, T47A, within the Sec1p-binding domain abolishes Mso1p functionality in vivo, and mso1T47A mutant cells display specific genetic interactions with sec1 mutants. Mso1p coimmunoprecipitates with Sec1p, Sso1/2p, Snc1/2p, Sec9p, and the exocyst complex subunit Sec15p. In sec4-8 and SEC4I133 mutant cells, association of Mso1p with Sso1/2p, Snc1/2p, and Sec9p is affected, whereas interaction with Sec1p persists. Furthermore, in SEC4I133 cells the dominant negative Sec4I133p coimmunoprecipitates with Mso1p-Sec1p complex. Finally, we identify Mso1p as a homologue of the PTB binding domain of the mammalian Sec1p binding Mint proteins. These results position Mso1p in the interface of the exocyst complex, Sec4p, and the SNARE machinery, and reveal a novel layer of molecular conservation in the exocytosis machinery.  相似文献   

19.
The mechanosensitive channel MscL in the inner membrane of Escherichia coli is a homopentameric complex involved in homeostasis when cells are exposed to hypo-osmotic conditions. The E. coli MscL protein is synthesized as a polypeptide of 136 amino acid residues and uses the bacterial signal recognition particle (SRP) for membrane targeting. The protein is inserted into the membrane independently of the Sec translocon. Mutants affected in the Sec-components are competent for MscL assembly. Translocation of the periplasmic domain was detected using a membrane-impermeant, sulfhydryl-specific gel-shift reagent. The modification of a single cysteine residue at position 68 indicated its translocation across the inner membrane. From these in vivo experiments, it is concluded that the electrical chemical membrane potential is not necessary for membrane insertion of MscL. However, depletion of the membrane insertase YidC inhibits translocation of the protein across the membrane. We show here that YidC is essential for efficient membrane insertion of the MscL protein. YidC is a component of a recently identified membrane insertion pathway that is evolutionarily conserved in bacteria, mitochondria and chloroplasts.  相似文献   

20.
The Tar chemoreceptor of Escherichia coli mediates attractant responses to aspartate, maltose, and phenol, repellent responses to Ni2+ and Co2+, and thermoresponses. To understand the role of threonine residue 154, which is located in the ligand-binding domain of Tar, we replaced the residue with serine, isoleucine, and proline by site-directed mutagenesis. The replacements caused reductions in aspartate sensing but had only a small effect on maltose sensing and almost no effect on phenol sensing, repellent sensing, and thermosensing. These results indicate that Thr-154 of Tar is rather specifically involved in aspartate sensing. The reductions in the response threshold for aspartate by the replacements with serine, isoleucine, and proline were less than 1, about 2, and more than 5 orders of magnitude, respectively. When the corresponding threonine residue in the Tsr chemoreceptor was replaced with the same amino acids, roughly similar reductions in the response threshold for serine resulted. Thus, these threonine residues seem to have a common role in detecting the aspartate and serine attractant families. A mechanism by which these chemoreceptors detect the amino acid attractants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号