首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fibrinolytic enzyme present in Agkistrodon contortrix contortrix (southern copperhead) venom has been purified by combination of CM-cellulose chromatography, molecular sieve chromatography on Sephadex G-100, p-aminobenzamidine-agarose affinity chromatography, and DEAE-cellulose chromatography. The enzyme, fibrolase, has a molecular weight of 23,000-24,000 and an isoelectric point of pH 6.8. It is composed of approximately 200 amino acids, possesses a blocked NH2-terminus and contains little or no carbohydrate. The enzyme shows no activity against a series of chromogenic p-nitroanilide substrates and is not inhibited by diisopropylfluorophosphate, soybean trypsin inhibitor, Trasylol, or p-chloromercuribenzoate. However, the enzyme is a metalloproteinase since it is inhibited by EDTA, o-phenanthroline and tetraethylenepentamine (a specific zinc chelator). Metal analysis revealed 1 mol of zinc/mol of protein. Study of cleavage site preference of the fibrinolytic enzyme using the oxidized B chain of insulin revealed that specificity is similar to other snake venom metalloproteinases with cleavage primarily directed to an X-Leu bond. Interestingly, unlike some other venom fibrinolytic metalloproteinases, fibrolase exhibits little if any hemorrhagic activity. The enzyme exhibits direct fibrinolytic activity and does not activate plasminogen. In vitro studies revealed that fibrolase dissolves clots made either from purified fibrinogen or from whole blood.  相似文献   

2.
In investigations aimed at characterizing snake venom blood clot-dissolving enzymes, we have developed a rapid two-step high-performance chromatography method for the isolation of these fibrinolytic enzymes from the venoms of Agkistrodon contortrix contortrix and Agkistrodon piscivorus conanti. The first step consisted of hydrophobic interaction chromatography on a propyl-aspartamide column. Fractions containing the fibrinolytic activity were then concentrated and applied to a hydroxylapatite column. The resulting preparation, assessed for purity by reverse-phase chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was homogeneous. The molecular weight of both venom fibrinolytic enzymes was approximately 23,000 and amino acid analysis, immunological cross-reaction, cyanogen bromide, and tryptic digestion indicate a significant degree of structural similarity. However, the general proteolytic activity of the A. p. conanti venom enzyme was significantly lower than the corresponding activity of the A. c. contortrix venom, whereas their fibrinolytic activities were quite similar.  相似文献   

3.
Fibrolase, a metalloproteinase isolated from the venom of Agkistrodon contortrix contortrix (southern copperhead snake), is a direct acting fibrinolytic enzyme that has been used to digest occlusive blood clots in animal models. The snake venom enzyme directly degrades fibrin associated with platelet rich blood clots and does not rely on plasminogen activation. Rethrombosis is a serious complication that is experienced in a significant percentage of patients treated with thrombolytic agents to remove occlusive vascular thrombi. The involvement of platelets in the initiation of rethrombosis is well known. Arg-Gly-Asp-(RGD)-containing agents have been shown to inhibit rethrombosis following thrombus dissolution by plasminogen activators. In an effort to create a more effective fibrinolytic enzyme and to target the enzyme to platelet-rich thrombi, thereby decreasing the potential for rethrombosis, a chimeric derivative of fibrolase has been produced. This report describes the construction and biochemical characterization of the chimeric enzyme and an evaluation of its in vitro activities. The chimera was formed by covalently incorporating an RGD-like peptide into fibrolase. The site of peptide attachment was determined to be a single lysine residue remote from the enzymes active site. Covalent modification of fibrolase with the RGD-like peptide did not inhibit either fibrinolytic activity of the enzyme nor platelet aggregation inhibitory activity of the peptide. The chimera not only retained the same level of enzymatic activity as native fibrolase, but also acquired the ability to inhibit platelet aggregation by binding to the fibrinogen receptor (integrin alphaIIbbeta3) on platelets.  相似文献   

4.
The amino acid sequence of a protease, protein C activator, from Agkistrodon contortrix contortrix venom was determined. Peptide fragments obtained by chemical or enzymatic cleavage of the S-carboxymethylated protein were purified by gel filtration and reverse-phase high-performance liquid chromatography. The present study demonstrates that protein C activator from A. contortrix contortrix venom is a trypsin-type serine protease that is composed of 231 residues with a molecular weight of 25,095 for the polypeptide portion of the molecule. By analogy to the mammalian serine proteases, the catalytic triad in venom protein C activator consists of His-40, Asp-85, and Ser-177. The protein also contains three N-linked glycosylation sites at Asn-21, Asn-78, and Asn-129. The amino acid sequence of protein C activator exhibits a high degree of sequence identity with other snake venom proteases: 73% with batroxobin, 68% with flavoxobin, and 55% with Russell's viper venom factor V activator.  相似文献   

5.
A novel thrombin-like enzyme (named contortrixobin) has been purified to homogeneity from the venom of Agkistrodon contortrix contortrix by affinity chromatography on arginine-Sepharose, anionic exchange chromatography, and HPLC. The complete amino acid sequence has been determined by Edman degradation and by mass spectral analysis of peptides generated by enzymatic cleavage. A microheterogeneity at the level of residue 234 has been detected, as demonstrated by peptides differing for the occurrence of Pro234 ( approximately 85%) or Asp234 ( approximately 15%). Contortrixobin (i) has six disulfide bonds whose sequence positions have been determined by mass spectrometry and (ii) does not contain carbohydrates in its structure. As expected, the 234 residue sequence of contortrixobin exhibits strong homology with snake venom serine proteases acting on either fibrinogen or other blood coagulation components. The interaction of contortrixobin with chromogenic substrates indicates a higher specificity for arginine over lysine in the primary subsite and a faster attack to ester than amides. The hydrolytic activity of contortrixobin is strongly inhibited by diisopropyl fluorophosphate and to a less extent by phenylmethylsulfonyl fluoride, benzamidine, and 4', 6-diamidino-2-phenylindole; hirudin (a specific alpha-thrombin inhibitor) as well as basic pancreatic trypsin inhibitor has a small effect on contortrixobin's catalytic properties. Contortrixobin (i) preferentially releases fibrinopeptide B from human fibrinogen, (ii) activates blood coagulation Factors V and XIII with a rate 250-500-fold lower than human alpha-thrombin, and (iii) does not induce thrombocyte aggregation, intracytoplasmatic calcium ion increase in platelets, and activation of Factor VIII. Evidence for biorecognition properties different from thrombin is also reported.  相似文献   

6.
Snake venoms are a rich source of enzymes including many hydrolytic enzymes. Some enzymes such as phospholipase A2, proteolytic enzymes, and phosphodiesterases are well characterized. However many enzymes, such as the glycosidase, hyaluronidase, have not been studied extensively. Here we describe the characterization of snake venom hyaluronidase. In order to determine which venom was the best source for isolation of the enzyme, the hyaluronidase activity of 19 venoms from Elapidae, Viperidae, and Crotalidae snakes was determined. Since Agkistrodon contortrix contortrix venom showed the highest activity, this venom was used for purification of hyaluronidase. Molecular weight was determined by matrix-assisted laser desorption ionization mass spectroscopy and was found to be 59,290 Da. The molecular weight value as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 61,000 Da. Substrate specificity studies indicated that the snake venom enzyme was specific only for hyaluronan and did not hydrolyze similar polysaccharides of chondroitin, chondroitin sulfate A (chondroitin 4-sulfate), chondroitin sulfate B (dermatan sulfate), chondroitin sulfate C (chondroitin 6-sulfate), chondroitin sulfate D, chondroitin sulfate E, or heparin. The enzyme is an endo-glycosidase without exo-glycosidase activity, as it did not hydrolyze p-nitrophenyl-beta-D-glucuronide or p-nitrophenyl-N-acetyl-beta-D-glucosaminide. The main hydrolysis products from hyaluronan were hexa- and tetrasaccharides with N-acetylglucosamine at the reducing terminal. The cleavage point is at the beta1,4-glycosidic linkage and not at the beta1,3-glycosidic linkage. Thus, snake venom hyaluronidase is an endo-beta-N-acetylhexosaminidase specific for hyaluronan.  相似文献   

7.
Fibrolase is a non-hemorrhagic zinc metalloproteinase found in southern copperhead snake venom (Agkistrodon contortrix contortrix). It is capable of degrading fibrin clots that result from purified fibrinogen or blood plasma. The DNA of fibrolase was amplified by recursive PCR, and cloned into the pET25b(+) expression vector. The effect of co-expression of signalless versions of catalysts or molecular chaperones FkpA, Skp and DsbC in cytoplasm was examined. When co-expressed with DsbC, compared to the totally insoluble inclusion bodies of fibrolase expressed separately, more than 90 % of recombinant fibrolase was soluble, according to denaturing polyacrylamide gel electrophoresis analysis. We also determined that FkpA and Skp had no effects on the solubility of target protein when co-expressed with fibrolase in Escherichia coli. Fibrolase was successfully purified using metal ion affinity chromatography and hydrophobic chromatography, and a maximum yield of 20 mg/L fibrolase was obtained. Fibrinolytic activity of recombinant fibrolase was demonstrated using fibrin plate assays and fibrinogen hydrolysis.  相似文献   

8.
Protein C activation initiated by the thrombin-thrombomodulin complex forms the major physiological anticoagulant pathway. Agkistrodon contortrix contortrix protein C activator, a glycosylated single-chain serine proteinase, activates protein C without relying on thrombomodulin. The crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator determined at 1.65 and 1.54 A resolutions, respectively, indicate the pivotal roles played by the positively charged belt and the strategic positioning of the three carbohydrate moieties surrounding the catalytic site in protein C recognition, binding, and activation. Structural changes in the benzamidine-inhibited enzyme suggest a probable function in allosteric regulation for the anion-binding site located in the C-terminal extension, which is fully conserved in snake venom serine proteinases, that preferentially binds Cl(1-) instead of SO(4)(2-).  相似文献   

9.
Fibrolase is a non-hemorrhagic zinc metalloproteinase found in southern copperhead snake (Agkistrodon contortrix contortrix) venom that acts directly on fibrin clots and does not require plasminogen or any other blood-borne intermediate for activity. Chimeras of fibrolase with RGD peptides conferring antiplatelet activity have been synthesized covalently, but we describe a simpler, cheaper and less toxic method, using site-directed mutagensis. Fibrolase variants that constitute the arginine-glycine-aspartic acid (Arg–Gly–Asp, RGD) motif were constructed using site-directed mutagenesis. Chimeric genes of fibrolase were expressed in Escherichia coli to obtain the bifunctional chimeric molecule of fibrolase that can inhibit platelet aggregation. After refolding and purification, platelet-targeted thrombolysis and antiplatelet aggregation of the target chimeric protein were determined. The mutant RGD-F2, using the GPRGDWRMLG peptide to replace the TSVSHD sequence between sites 69 and 72, not only had almost the same catalytic ability as wild-type fibrolase but also a strong ability to inhibit platelet aggregation.  相似文献   

10.
蛇毒纤溶酶Alfimeprase在大肠杆菌中的可溶表达和纯化   总被引:4,自引:1,他引:3  
Alfimeprase是Fibrolase的突变体,是一种蛇毒纤溶酶,有纤溶活性而无出血性。根据Alfimeprase的氨基酸序列和大肠杆菌密码子偏爱性,利用PCR的方法合成Alfimeprase DNA序列,分别融合在NusA和MBP的C端,与分子伴侣FkpA在大肠杆菌Origami B(DE3)中共表达,融合蛋白NusA/Alfimeprase以部分可溶的形式存在,可溶部分占上清总蛋白的25%左右,通过镍柱亲合层析纯化和肠激酶切割得到具有纤溶活性的重组蛋白Alfimeprase。本研究是首次报道在大肠杆菌中可溶表达Alfimeprase,为以后深入研究其功能及应用奠定了基础。  相似文献   

11.
The crude venom of Agkistrodon contortrix contortrix was characterized by means of 2D-PAGE (using various separation principles in the respective directions) and high performance gel filtration chromatography. It was found that the venom presents a rich and remarkably stable mixture of proteins, mostly glycoproteins, which may interact each other. High stability of the venom in spite of the presence of many proteolytic enzymes, must most likely be attributed to the sugar moieties of venom proteins. Carbohydrate composition also causes considerable heterogeneity in charge and the presence of wide range of charge isomers. The intricate complexity of the venom makes it a real difficult-to-separate mixture.  相似文献   

12.
A 30-residue peptide was obtained from ribonuclease A by chemical cleavage with cyanogen bromide, subsequent sulfitolysis with concomitant S-sulfonation, and finally enzymatic cleavage withStaphylococcus aureus protease. The peptide was converted to the free thiol form by reductive cleavage of the S-sulfo-protecting groups withd,l-dithiothreitol. This peptide consisted of residues 50–79 of the native sequence of ribonuclease A, with the exception that methionine-79 had been converted to homoserine. Included in this sequence are residues cysteine-65 and cysteine-72, which form a disulfide bond in the native enzyme, as well as cysteine-58. This molecule may form one of three possible intramolecular disulfide bonds upon thiol oxidation, viz. one loop of 15 and 2 of 8 residues each. These isomeric peptides were prepared by oxidation with cystamine, 2-aminoethanethiolation of residual thiols, and fractionation by reverse-phase high-performance liquid chromatography. Disulfide pairings were established by mapping the tryptic fragments and confirming their composition by amino acid analysis. After protracted incubation under oxidizing conditions at 25.0°C andp H 8.0, the 26-member ring incorporating the native disulfide bond between residues 65 and 72 is the dominant product. Assuming that equilibrium is established, we infer that local interactions in the sequence of ribonuclease A significantly stabilize the native 8-residue disulfide loop with respect to the non-native 8-residue loop (G°=–1.1±0.1 kcal mole–1). The implications of this observation for the oxidative folding of the intact protein are discussed.  相似文献   

13.
Crotalidae and Viperidae snake venoms contains several kinds of metalloproteinases which cause localized hemorrhage by direct action on blood vessel walls. We report here the entire amino acid sequence and the disulfide bridge locations of HT-2, one of the hemorrhagic toxins isolated from the venom of Crotalus ruber ruber (red rattlesnake). The non-reduced protein was first cleaved at methionine residues to provide a set of 8 fragments, which covered the entire sequence of HT-2. The disulfide bridge locations of HT-2 were also determined by using these primary fragments. The unambiguous sequence for the whole protein was then established by conventional methods using lysyl endopeptidase and thermolysin digests. HT-2 consisted of 202 amino acid residues with two disulfide bridges, which were assigned to Cys-117-Cys-197 and Cys-157-Cys-164. HT-2 had a typical zinc-chelating sequence His-Glu-X-X-His (residues 142-146) found in thermolysin, and its overall sequence showed, respectively, 50, 52, and 53% identities to those of HR2a, H2-proteinase, and the metalloproteinase domain of HR1B. However, the disulfide bridge locations of HT-2 were different from those in the other metalloproteinases. The primary structure of HT-2 was more closely related to that of Ht-d from Crotalus atrox recently determined (81% identity). From the structural comparison with five metalloproteinases so far elucidated, six conservative amino acid residues, which may possibly be related to the induction of the hemorrhagic activity, were suggested to be present in these toxins.  相似文献   

14.
1. Commercially available preparations of venoms of three subspecies of copperhead snake (Agkistrodon contortrix) were compared as to toxicity, enzymatic activities, effect on a nerve-muscle preparation and capacity to induce clotting of a fibrinogen solution or plasma. 2. Northern copperhead venom contained apparent neurotoxic activities that were not present in broadbanded copperhead venom and only partially present in southern copperhead venom. 3. Procoagulant activity was demonstrated in whole northern copperhead venom in the absence of exogenous calcium. Procoagulant activity was present in certain isolated fractions of southern and broadbanded copperhead venoms, but was not apparent in the whole venoms. 4. Differences were noted in the levels of enzyme activities and electrophoretic patterns of the three venoms.  相似文献   

15.
16.
An enzyme capable of activating protein C has been purified 60-fold from the venom of the Southern copperhead snake (Agkistrodon contortrix) by ion-exchange and gel filtration chromatography. The purified enzyme consists of a single polypeptide with an apparent molecular weight of 37,000. The isoelectric point of the protein C activator was determined to be 6.3 when measured by chromatofocusing. The enzyme was inhibited by p-nitrophenyl p-guanidinobenzoate, phenylmethanesulfonyl fluoride, and D-Phe-Pro-Arg-CH2Cl but was not affected by cysteine-directed reagents or by metal chelators. These results suggest that the enzyme is a serine protease. Protein C activator was capable of hydrolyzing the thrombin substrate tosyl-Gly-Pro-Arg-p-nitroanilide (TGPRpNA), and steady-state kinetic studies determined that the Km for amidolysis of this substrate was 1.1 mM while the Vmax was 66 s-1. The activator demonstrated considerable substrate specificity since the amidolysis of D-Phe-Pip-Arg-pNA, D-Ile-Pro-Arg-pNA, Bz-Ile-Glu-Gly-Arg-pNA, D-Val-Leu-Arg-pNA, and pyrGlu-Pro-Arg-pNA was less than 10% of that of TGPRpNA when measured under identical conditions using 1.0 mM substrate concentrations. The enzyme appears to be thrombin-like in its preference for arginyl as compared to lysyl chloromethyl ketones as well as by its inhibition by benzamidine and p-aminobenzamidine. However, the substrate specificity of the activator is distinguished from alpha-thrombin in that it does not clot fibrinogen and does not react with antithrombin III or hirudin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
J D Klein  F J Walker 《Biochemistry》1986,25(15):4175-4179
A protease has been purified by ion-exchange chromatography from the venom of Agkistrodon contortrix contortrix (Southern copperhead snake) that can activate the vitamin K dependent protein, protein C. The apparent molecular weight of this protease, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 20,000 under nonreducing conditions. Incubation of this protease with plasma resulted in a prolongation of the clotting time and a time-dependent increase in amidolytic activity. Incubation of the protease with purified protein C resulted in an increase in both amidolytic and anticoagulant activity. The protease had no inhibitory effect on thrombin, factor V, fibrinogen, or factor X. It had slight clotting activity toward fibrinogen. The apparent Km of the protease for protein C was 0.28 microM. Calcium ions were observed to inhibit protein C activation with an apparent Ki of 0.2 mM. Ethylenediaminetetraacetic acid, diisopropyl fluorophosphate, and soybean trypsin inhibitor were observed to inhibit the venom protease. These results suggest that the venom of the Southern copperhead snake contains a protease that is a specific activator of protein C.  相似文献   

18.
In investigations aimed at characterizing snake venom clot-dissolving enzymes, we have purified a fibrinolytic proteinase from the venom of Bothrops leucurus (white-tailed jararaca). The proteinase was purified to homogeneity by a combination of molecular sieve chromatography on Sephacryl S-200 and ion-exchange chromatography on CM Sepharose. The enzyme called leucurolysin-a (leuc-a), is a 23 kDa metalloendopeptidase since it is inhibited by EDTA. PMSF, a specific serine proteinase inhibitor had no effect on leuc-a activity. The amino acid sequence was established by Edman degradation of overlapping peptides generated by a variety of selective cleavage procedures. Leuc-a is related in amino acid sequence to reprolysins. The protein is composed of 200 amino acid residues in a single polypeptide chain, possessing a blocked NH2-terminus and containing no carbohydrate. The proteinase showed proteolytic activity on dimethylcasein and on fibrin (specific activity=21.6 units/mg and 17.5 units/microg, respectively; crude venom=8.0 units/mg and 9.5 units/microg). Leuc-a degrades fibrin and fibrinogen by hydrolysis of the alpha chains. Moreover, the enzyme was capable of cleaving plasma fibronectin but not the basement membrane protein laminin. Leuc-a cleaved the Ala14-Leu15 and Tyr16-Leu17 bonds in oxidized insulin B chain. The pH optimum of the proteolysis of dimethylcasein by leuc-a was about pH 7.0. Antibody raised in rabbit against the purified enzyme reacted with leuc-a and with the crude venom of B. leucurus. In vitro studies revealed that leuc-a dissolves clots made either from purified fibrinogen or from whole blood, and unlike some other venom fibrinolytic metallopeptidases, leuc-a is devoid of hemorrhagic activity when injected (up to 100 microg) subcutaneously into mice.  相似文献   

19.
Four polypeptide neurotoxins, possessing paralytic activity for mice, were isolated from the venom of the Central Asian black scorpion Orthochirus scrobiculosus. All these toxins, Os-1 - Os-4, were shown to be homogeneous by disc-electrophoresis and N-terminal group analyses. The amino acid composition of the toxins was determined, methionine residues being found in toxin Os-1. The neurotoxin Os-3 was subjected to tryptic and chymotryptic hydrolyses and its total amino acid sequence was established. It was shown that neurotoxin Os-3 consists of 67 amino acid residues with four intramolecular disulfide bonds.  相似文献   

20.
The disulfide structure of alfimeprase, a recombinant analog of fibrolase, was experimentally determined by a combination of peptide mapping, Edman degradation, and mass spectrometry. The three disulfide bonds were determined to be Cys-116/196, Cys-156 /180, and Cys-158/163 with the residue number system of alfimeprase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号