首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Terminally misfolded or unassembled proteins in the early secretory pathway are degraded by a ubiquitin- and proteasome-dependent process known as ER-associated degradation (ERAD). How substrates of this pathway are recognized within the ER and delivered to the cytoplasmic ubiquitin-conjugating machinery is unknown. We report here that OS-9 and XTP3-B/Erlectin are ER-resident glycoproteins that bind to ERAD substrates and, through the SEL1L adaptor, to the ER-membrane-embedded ubiquitin ligase Hrd1. Both proteins contain conserved mannose 6-phosphate receptor homology (MRH) domains, which are required for interaction with SEL1L, but not with substrate. OS-9 associates with the ER chaperone GRP94 which, together with Hrd1 and SEL1L, is required for the degradation of an ERAD substrate, mutant alpha(1)-antitrypsin. These data suggest that XTP3-B and OS-9 are components of distinct, partially redundant, quality control surveillance pathways that coordinate protein folding with membrane dislocation and ubiquitin conjugation in mammalian cells.  相似文献   

2.
The cellular response to heat stress includes the induction of a group of proteins called the Heat Shock Proteins, whose functions include the synthesis of the thermoprotectant trehalose, refolding of denatured proteins, and ubiquitin- and proteasome-dependent degradation. Recent studies show that simply increasing the activity of ubiquitin- and proteasome-dependent degradation can replace the essential functions played by the induction of heat shock proteins during a heat stress. These results suggest that accumulation of denatured or aggregated proteins is the reason for the loss of cell viability due to heat stress.  相似文献   

3.
The cellular response to heat stress includes the induction of a group of proteins called the Heat Shock Proteins, whose functions include the synthesis of the thermoprotectant trehalose, refolding of denatured proteins, and ubiquitin- and proteasome-dependent degradation. Recent studies show that simply increasing the activity of ubiquitin- and proteasome-dependent degradation can replace the essential functions played by the induction of heat shock proteins during a heat stress. These results suggest that accumulation of denatured or aggregated proteins is the reason for the loss of cell viability due to heat stress.  相似文献   

4.
Ubiquitin ligases direct the transfer of ubiquitin onto substrate proteins and thus target the substrate for proteasome-dependent degradation. SCF complexes are a family of ubiquitin ligases composed of a common core of components and a variable component called an F-box protein that defines substrate specificity. Distinct SCF complexes, defined by a particular F-box protein, target different substrate proteins for degradation. Although a few have been identified to be involved in important biological pathways, such as the cell division cycle and coordinating cellular responses to changes in environmental conditions, the role of the overwhelming majority of F-box proteins is not clear. Creating inhibitors that will block the in vivo activities of specific SCF ubiquitin ligases may provide identification of substrates of these uncharacterized F-box proteins. Using Saccharomyces cerevisiae as a model system, we demonstrate that overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p results in specific inhibition of their SCF complexes. Analyses of mutant amino-terminal alleles demonstrate that the interaction of these polypeptides with their full-length counterparts is an important step in the inhibitory process. These results suggest a common means to inhibit specific SCF complexes in vivo.  相似文献   

5.
The latent membrane protein 1 (LMP1) of the Epstein-Barr virus is a constitutively active receptor essential for B lymphocyte transformation by the Epstein-Barr virus. It is a short-lived protein, but the proteolytic pathway involved in its degradation is not known. The ubiquitin pathway is a major system for specific protein degradation in eukaryotes. Most plasma membrane substrates of the pathway are internalized upon ubiquitination and delivered for degradation in the lysosome/vacuole. Here we show that LMP1 is a substrate of the ubiquitin pathway and is ubiquitinated both in vitro and in vivo. However, in contrast to other plasma membrane substrates of the ubiquitin system, it is degraded mostly by the proteasome and not by lysosomes. Degradation is independent of the single Lys residue of the protein; a lysine-less mutant LMP1 is degraded in a ubiquitin- and proteasome-dependent manner similar to the wild type protein. Degradation of both wild type and lysine-less protein is sensitive to fusion of a Myc tag to the N terminus of LMP1. In addition, deletion of as few as 12 N-terminal amino acid residues stabilizes the protein. These findings suggest that the first event in LMP1 degradation is attachment of ubiquitin to the N-terminal residue of the protein. We present evidence suggesting that phosphorylation is also required for degradation of LMP1.  相似文献   

6.
7.
Ubiquitin is a small protein involved in an ATP-dependent proteolytic pathway in all eukaryotes. This pathway has been demonstrated to be required for both the bulk degradation of cellular proteins and the targeted proteolysis of specific regulatory proteins. We have investigated the presence of ubiquitin (Ub) and the ubiquitin-conjugating system in dormant and activated tubers of Helianthus tuberosus L. cv. OB 1 that represent a widely used model system for studies on the cell cycle in plants. Immunoblot experiments revealed the presence of free ubiquitin and ubiquitin conjugates. Furthermore, the presence of an active ubiquitin-conjugating system, both time- and ATP-dependent, was demonstrated by incubation with 125I-labeled ubiquitin. A few proteins able to form thiol esters with 125I-Ub and probably corresponding to ubiquitin-conjugating enzymes, E1 and E2s, were also found. During the first cell cycle, several proteins become ubiquitinated. In particular a large amount of protein conjugates was present at 6 h when the lowest content of free ubiquitin was found. Subsequently, a dramatic decrease in ubiquitin conjugates occurred. It is well known that cell cycle progression in eukaryotes depends on cyclin levels and cyclin B degradation is ubiquitin- and ATP-dependent. By immunoblot experiments we showed that cyclin B in H. tuberosus is present as at least two protein bands of 50 and 54 kDa and that their amounts undergo profound changes during the cell cycle. The 54-kDa band was also recognized by an anti-ubiquitin antibody. These data seem to indicate that in H. tuberosus activated tuber slices, the ATP-dependent ubiquitin proteolytic pathway is involved in the dedifferentiation process occurring after the artificial break of dormancy when the cells acquire the characteristics linked to the meristematic state.  相似文献   

8.
9.
10.
11.
12.
13.
A role for Rad23 proteins in 26S proteasome-dependent protein degradation?   总被引:4,自引:0,他引:4  
Treatment of cells with genotoxic agents affects protein degradation in both positive and negative ways. Exposure of S. cerevisiae to the alkylating agent MMS resulted in activation of genes that are involved in ubiquitin- and 26S proteasome-dependent protein degradation. This process partially overlaps with the activation of the ER-associated protein degradation pathway. The DNA repair protein Rad23p and its mammalian homologues have been shown to inhibit degradation of specific substrates in response to DNA damage. Particularly the recently identified inhibition of degradation by mouse Rad23 protein (mHR23) of the associated nucleotide excision repair protein XPC was shown to stimulate DNA repair.Recently, it was shown that Rad23p and the mouse homologue mHR23B also associate with Png1p, a deglycosylation enzyme. Png1p-mediated deglycosylation plays a role in ER-associated protein degradation after accumulation of malfolded proteins in the endoplasmic reticulum. Thus, if stabilization of proteins that are associated with the C-terminus of Rad23p is a general phenomenon, then Rad23 might be implicated in the stimulation of ER-associated protein degradation as well. Interestingly, the recently identified HHR23-like protein Mif1 is also thought to play a role in ER-associated protein degradation. The MIF1 gene is strongly activated in response to ER-stress. Mif1 contains a ubiquitin-like domain which is most probably involved in binding to S5a, a subunit of the 19S regulatory complex of the 26S proteasome. On the basis of its localization in the ER-membrane, it is hypothesized that Mif1 could play a role in the translocation of the 26S proteasome towards the ER-membrane, thereby enhancing ER-associated protein degradation.  相似文献   

14.
ER-associated protein degradation (ERAD) is a protein quality control system of ER, which eliminates misfolded proteins by proteasome-dependent degradation and ensures export of only properly folded proteins from ER. Herp, an ER membrane protein upregulated by ER stress, is implicated in regulation of ERAD. In the present study, we show that Herp interacts with members of the ubiquilin family, which function as a shuttle factor to deliver ubiquitinated substrates to the proteasome for degradation. Knockdown of ubiquilin expression by small interfering RNA stabilized the ERAD substrate CD3δ, whereas it did not alter or increased degradation of non-ERAD substrates tested. CD3δ was stabilized by overexpressed Herp mutants which were capable of binding to ubiquilins but were impaired in ER membrane targeting by deletion of the transmembrane domain. Our data suggest that Herp binding to ubiquilin proteins plays an important role in the ERAD pathway and that ubiquilins are specifically involved in degradation of only a subset of ubiquitinated targets, including Herp-dependent ERAD substrates.  相似文献   

15.
Recent identification of U-box proteins as E3 ubiquitin ligases suggests that the U-box arm-repeat protein PHOR1, for which we have demonstrated a role in GA signal transduction, may play a role in GA signaling by ubiquitinating one or more components of the GA response pathway to target them for proteasome degradation. Here we show that PHOR1 function in GA signaling is not exclusive of potato plants, but it is also conserved in Arabidopsis. Three PHOR1-homologs have been identified in this plant species, which would correspond to PHOR1-orthologs. Experimental evidence has recently been obtained for the involvement of proteasome-dependent protein degradation in GA-mediated destabilization of the SLN1 DELLA protein, thus pointing to this repressor as a likely substrate for ubiquitination by the PHOR1 ubiquitin ligase activity.  相似文献   

16.
17.
The eukaryotic N-end rule pathway mediates ubiquitin- and proteasome-dependent turnover of proteins with a bulky amino-terminal residue. Arabidopsis locus At5g02310 shows significant similarity to the yeast N-end rule ligase Ubr1. We demonstrate that At5g02310 is a ubiquitin ligase and mediates degradation of proteins with amino-terminal Arg residue. Unlike Ubr1, the Arabidopsis protein does not participate in degradation of proteins with amino-terminal Phe or Leu. This modified target specificity coincides with characteristic differences in domain structure. In contrast to previous publications, our data indicate that At5g02310 is not identical to CER3, a gene involved in establishment of a protective surface wax layer. At5g02310 has therefore been re-designated PROTEOLYSIS 6 (PRT6), in accordance with its ubiquitin ligase function.  相似文献   

18.
19.
Ingvardsen C  Veierskov B  Joshi PA 《Planta》2001,213(3):333-341
This study provides an immunohistochemical demonstration of the involvement of the ubiquitin- and proteasome-dependent pathway during differentiation and organogenesis in plants. The localisation of ubiquitin and the proteasome was studied in meristems, leaves, stems and roots of sunflower (Helianthus annuus L. cv. Giganteus). By using a new technique that enhances very low antigen signals, we obtained information on the structural distribution of the ubiquitin- and proteasome-dependent pathway, and of the importance of this pathway during organogenesis and plant development. Ubiquitin and the proteasome showed overall similarities in their cellular localisation. The highest antigenic signal was observed in the root and shoot apical meristems, in leaf primordia and vascular tissue. The cambium showed less expression than the apical meristems. During adventitious root formation in cuttings, no sign of increased expression was observed within dedifferentiating tissue, but as organogenesis progressed, the antigenic signal of ubiquitin and the proteasome gradually increased in the developing roots. Comparison of immunochemical results and Western blots demonstrated that important changes in the cellular antigen signal could only be detected by immunochemistry.  相似文献   

20.
植物泛素结合酶E2功能研究进展   总被引:4,自引:0,他引:4  
泛素-26S蛋白酶体途径是细胞内蛋白质选择性降解的重要途径,广泛参与植物生长发育相关过程。该途径中关键酶主要包括泛素活化酶(E1)、泛素结合酶(E2)和泛素连接酶(E3),对靶蛋白泛素化起重要作用。在简单概述泛素化过程的基础上,主要对近年来植物E2蛋白在DNA修复、光周期和维管分化调控,缺素及抗逆胁迫响应中的功能进行综述,为今后该蛋白功能的深入研究及木本植物中该功能基因的发掘奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号