首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The administration of 40 μg or more of dopamine sulfate conjugate, the predominant form of dopamine in the peripheral nervous system, into the left lateral ventricle of Sprague Dawley rat led to seizures. The severe and generalized convulsions with clonic extension of forelimbs and hindlimbs occurred within 2–6 minutes of the injection, and lasted for 10–20 minutes. No convulsion was observed when dopamine, norepinephrine, nitrocatechol sulfate or a hydrolyzed solution of dopamine sulfate conjugate were similarly injected. The dopamine sulfate- induced seizures were not blocked by pretreatment of rats with phenoxybenzamine, metoclopramide or haloperidol but were reduced by propranolol and suppressed by diazepam. Dopamine sulfate conjugates which were recently detected in discrete areas of rat brain and in human cerebrospinal fluid may thus have certain function in the brain different from that of free dopamine.  相似文献   

2.
The heparan sulfate of rat brain   总被引:2,自引:0,他引:2  
  相似文献   

3.
Bombesin increases dopamine function in rat brain areas   总被引:1,自引:0,他引:1  
Bombesin is a tetradecapeptide heterogenously distributed in the mammalian brain. Bombesin (45 micrograms) given intracisternally (IC) to unanesthetized rats increased the accumulation of dihydroxyphenylalanine (DOPA) in striatum, olfactory tubercles and hypothalamus after DOPA-decarboxylase inhibition, thus indicating an increased dopamine synthesis. A dose-dependent increase in dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), the principal dopamine metabolites, was seen in several brain areas 1 hr after IC injection of bombesin (0-60 micrograms). In striatum and olfactory tubercles HVA increased more than DOPAC with a maximal increase after 30-45 micrograms. In a time-course experiment a biphasic change of dopamine metabolites was observed in the olfactory tubercles with an actual decrease in metabolite levels 4 hr after 60 micrograms IC bombesin injection. Co-administration of bombesin and naloxone (8 mg/kg IP) or ethanol (2.25 g/kg IP) did not affect the increase in dopamine metabolites seen after bombesin alone. The action of IC administered bombesin on dopamine function was most pronounced in hypothalamus indicating a neuroendocrine regulatory of the peptide.  相似文献   

4.
The distribution of a dopamine D2 receptor mRNA in rat brain   总被引:4,自引:0,他引:4  
D M Weiner  M R Brann 《FEBS letters》1989,253(1-2):207-213
Based on the recently reported sequence of a dopamine D2 receptor cloned from rat brain, we prepared a series of cDNA probes to determine the distribution of mRNA encoding this receptor. Within the forebrain, D2 receptor mRNA is abundant in the caudate-putamen, accumbens nucleus and olfactory tubercle. Moderate to low levels of mRNA are observed in the medial habenular nucleus, diagonal band, lateral septal nucleus, claustrum, dorsal endopiriform nucleus, and entorhinal cortex. In the mesencephalon, D2 receptor mRNA is abundant within the substantia nigra, pars compacta, and the ventral tegmental area. Comparison of the distribution of the mRNA and ligand binding indicates that both presynaptic and postsynaptic D2 receptors of the nigrostriatal, mesolimbic and mesocortical pathways are derived from the same mRNA.  相似文献   

5.
In experiments on rats it was shown that after 20 Gy irradiation dopamine and homovanilic acid content increases in the caudate nucleus and limbic structures of the forebrain: dopamine disappears more readily when its biosynthesis is blocked. The rate of the mediator degradation in the brain increases by 1.5-2 times, and the rate of the synthesis, by 3-5 times at early times after irradiation.  相似文献   

6.
The objective of this study was to examine the role of dopamine (DA) receptors in the nucleus accumbens (ACB) in controlling feedback regulation of mesolimbic somatodendritic DA release in the ventral tegmental area (VTA) of Wistar rats using ipsilateral dual-probe in vivo microdialysis. Perfusion of the ACB for 60 min with the DA uptake inhibitor GBR-12909 (10-1,000 microM) or nomifensine (10-1,000 microM) dose-dependently increased the extracellular levels of DA in ACB and concomitantly reduced the extracellular levels of DA in the VTA. Coperfusion of 100 microM nomifensine with either 100 microM SCH-23390 (SCH), a D1 antagonist, or 100 microM sulpiride (SUL), a D2 receptor antagonist, produced either an additive (for SCH) or a synergistic (for SUL) elevation in the extracellular levels of DA in the ACB, whereas the reduction in the extracellular levels of DA in the VTA produced by nomifensine alone was completely prevented by addition of either antagonist. Application of 100 microM SCH or SUL alone through the microdialysis probe in the ACB increased the extracellular levels of DA in the ACB, whereas the extracellular levels of DA in the VTA remained unchanged. Overall, the results suggest that (a) increasing the synaptic levels of DA in the ACB activates a long-loop negative feedback pathway to the VTA involving both D1 and D2 postsynaptic receptors and (b) terminal DA release within the ACB is regulated directly by D2 autoreceptors and may be indirectly regulated by D1 receptors, possibly on interneurons and/or through postsynaptic inhibition of the negative feedback loop.  相似文献   

7.
This commentary is a critical evaluation of research on the significance of dopamine (DA) metabolism in the striatum of the rat. The possible sequence of DA metabolism is discussed. Special reference was given to a possible differentiation between “intra-neuronal” and “extra-neuronal” formation of DA. In addition a possible relation between drug-induced changes in DA metabolite levels to processes as release and metabolism of the transmitters, was investigated. It is concluded that our understanding of DA metabolism is still far from clear. The only consistent finding at the present time is the fact that decreased DA release is reflected by decreased 3-MT levels. It is emphasized that one should investigate complete changes in the “fingerprint” of changes of DA metabolism rather than to rely on one or two metabolites, when the influence of a drug on dopaminergic transmission is to be established.  相似文献   

8.
CCK/dopamine interactions in Fawn-Hooded and Wistar-Kyoto rat brain   总被引:3,自引:0,他引:3  
The aim of this study was to compare the actions of CCK neuropeptides within the nucleus accumbens (N.Acc) of alcohol preferring (Fawn-Hooded, FH) and alcohol nonpreferring (Wistar-Kyoto, WKY) rats. CCK-8S (30-300 nM) facilitated the K(+) stimulated release of [(3)H]dopamine (DA) from N.Acc prisms in both rat strains, whereas CCK-4 (30 nM-1 microM) caused a significant decrease of evoked [(3)H]DA in the FH rat only. A scattered distribution of CCK-A and -B receptor immunopositive varicose fibers were visualized throughout the N.Acc of both rat strains along with a topographic distribution of CCK receptor positive cells throughout the ventral mesencephalon.  相似文献   

9.
The hypothesis that psychotomimetics induce a rapid dopamine receptor regulation that could participate in the expression of the brain dopaminergic overactivation and in the early signs of psychotic-like behaviour, was checked by radioligand binding on rat brain cryosections. For this purpose, subchronic 7-day-d-amphetamine pretreatment was combined with acute amphetamine, phencyclidine or LSD challenge. Acute application of psychotomimetics affected only striatal and accumbens but not nigral and olfactory dopamine receptor binding after 40 min, while subchronic amphetamine expressed no effect, as revealed by two-way ANOVA. Post-hoc statistical analysis showed that only striatal and accumbens[3H]SCH 23390 binding decrease (10-12%) following phencyclidine and striatal [3H]spiperone binding increase (11%) after acute amphetamine were significant. It is assumed that such moderate dopamine receptor binding changes probably reflect the fast receptor regulation responses without important influence on a proposed drug-induced dopaminergic overactivity. The registered alterations of D1 receptor binding after phencyclidine are suggested to be capable to modify the activity of some other neural pathways in the basal ganglia and thus participate in a psychotic-like behaviour.  相似文献   

10.
K S Funatsu  K Inanaga 《Peptides》1987,8(2):319-325
Nanomolar concentration of thyrotropin-releasing hormone (TRH) in vitro caused a significant reduction of [3H]apomorphine binding sites (70% of the control) in the rat striatum and the limbic forebrain. [3H]Spiperone binding was not affected by TRH. On the other hand, dopamine and apomorphine displaced [3H]TRH binding partially, suggesting the presence of a TRH receptor subpopulation that has a high affinity for dopamine agonist. Most of the neuroleptics displaced [3H]TRH binding dose-dependently in the micromolar range. (-)-Sulpiride had no affinity to TRH receptors. These findings suggest that one of the important roles of TRH as a neuromodulator is to modulate receptors for classical neurotransmitters, and this receptor-receptor interaction may be of importance in explaining the well known stimulating effects of TRH on the dopaminergic system.  相似文献   

11.
Rapid inactivation of enzymes prior to the assay of rat brain catecholamines was evaluated. Regional levels of norepinephrine and dopamine were measured by high performance liquid chromatography with electrochemical detection after enzyme inactivation by microwave irradiation at levels of 1.3 kw and 5 kw, and compared with decapitation. The differences found in regional levels of catecholamines between the two methods of euthanasia indicate that rapid inactivation of brain enzymes is necessary for accurate analysis of catecholamines in rat brain.  相似文献   

12.
Altered in vivo and in vitro brain protein metabolism have been demonstrated in rodents following long-term ethanol ingestion. In the present study, ethanol effects were examined on properties of brain ribosomes of male Sprague-Dawley rats ingesting a specially formulated Lieber-DeCarli liquid diet. The development of physical dependence was demonstrated by the presence of withdrawal reactions within 24 hr of ethanol abstinence. Data showed significant inhibition of in vitro protein synthesis by ribosomes from the ethanol and 1-day-withdrawn groups. Partial reversal of inhibition occurred by using a control brain pH 5 enzymes source instead of the matched source. The observed [14C]leucine-incorporating activity was temperature dependent, with the optimum temperature being 37°C. The determination of the state of ribosomal aggregation showed an increased monosomes-disomes ratio in the ethanol group. The ratio was even more increased in the 1-day-withdrawn group. Data suggest that reduced ribosomal binding to stable mRNA may be a contributing factor in the ethanol-induced effects on protein synthesis.  相似文献   

13.
Using radioenzymatic assay procedures, we have measured picomolar amounts of endogenous norepinephrine (NE) and dopamine (DA) released in vitro. The release of NE and DA in response to KCl stimulation was examined in 6 brain regions: cortex, hippocampus, hypothalamus, striatum, combined accumbens-olfactory tubercle, and substantia nigra. NE release was detectable in all regions except striatum. Amounts of NE released by 55mM KCl (expressed as % control) were: cortex (313%), hippocampus (227%), hypothalamus (225%), accumbens-tubercle (278%), s. nigra (155%). KCl stimulated release of DA was detected in 3 regions: striatum (414%), accumbenstubercle (282%), and hypothalamus (312%). DA was measurable in filtrates from the s. nigra but levels in control and KCl stimulated samples were equal. Release of NE and DA was also measured in 12 brain regions after incubation of tissue in vitro with 10?4M d-amphetamine sulfate. d-Amphetamine stimulated NE outflow when compared to controls in all regions examined. DA outflow was markedly increased in most regions, especially striatum (287%), hypothalamus (387%) and accumbens-tubercle (670%). d-Amphetamine doubled endogenous DA outflow from the s. nigra.  相似文献   

14.
The effect of Soman, Sarin and Vx, known potent cholinesterase inhibitors, on the binding of several neurotransmitter receptors in various regions of brain was studied. Vx, exhibited considerable inhibition of binding of 3H-N-methylscopolamine (3H-NMS) to muscarinic receptors and of 3H-spiperone to dopamine D2 receptors in the striatum. 3H-NMS binding was 50% inhibited at 10(-6)M and 90% at 10(-3)M Vx. Inhibition of 3H-spiperone binding by Vx in striatum had an ID50 of 10(-5)M. KD of the treatment was affected more than Bmax. Binding inhibition of both 3H-NMS and 3H-spiperone in post-mortem brain of rats pre-treated with Vx confirmed the specificity of the organophosphates effect, since other organophosphates and ligands failed to show any activity.  相似文献   

15.
Sultopride and sulpiride are both chemically similar benzamide derivatives and selective antagonists of dopamine D2 receptors. However, these drugs differ in clinical properties. We compared the effects of sultopride and sulpiride on dopamine turnover in rats following the administration of these drugs alone or in combination with apomorphine. The administration of sultopride or sulpiride markedly accelerated dopamine turnover in the rat brain. The increase in the level of dopamine metabolites in the striatum was more marked in the sultopride-treated rats. Sulpiride affected the limbic dopamine receptors preferentially, whereas sultopride affected the striatal and the limoic dopamine receptors equally. A low dose of apomorphine induced a reduction in the concentration of dopamine metabolites in the striatum and the nucleus accumbens by approximately 55%, but not in the medial prefrontal cortex. Sultopride was more effective in preventing an apomorphine-induced reduction in dopamine metabolite levels. These results from rat experiments would model the pharmacological differences observed between sultopride and sulpiride in clinical use.  相似文献   

16.
Latent inhibition (LI) is a behavioral phenomenon, in which repeated presenting of a non-reinforced stimulus retards conditioning to this stimulus when it is coupled with a reinforcer. In order to find specific serotonin (5-HT- and dopamine (DA) changes mediating the LI, the 5-HT and DA metabolism was investigated in certain brain regions. Oxidative deamination of 5-HT and DA by monoamine oxidase (MAO) was determined in the prefrontal cortex, striatim, amygdala, and hippocampus at preexposure and testing stages of the LI using the passive avoidance procedure in rats. Preexposed animals demonstrated high MAO activity for 5-HT deamination in the amygdala and striatum and lower MAO activity for DA deamination in the amygdala and hippocampus. After testing the LI, a high level of 5-HT deamination by MAO was revealed in the amygdala, white the lower level of 5-HT deamination by MAO was shown in the prefrontal cortex. At the same time, no changes in DA metabolism were found in all the brain regions studied. Thus, the role of dopaminergic system in the LI effect may be limited by the preexposure stage. The obtained evidence suggests that the enhanced 5-HT activity in the amygdala and striatum induced by the preexposed stimulus is a principal biochemical mechanism underlying the LI.  相似文献   

17.
A recently described procedure of freezing and thawing, which allows retention of metabolic and functional integrity, has been applied in the study of serotonin and dopamine uptake into frozen rat and post mortem human frozen tissue. TheK m andV max for the serotonin uptake into human hypothalamus were estimated to be 0.12 M and 0.03 nmol/g/min respectively. TheK m andV max for the dopamine uptake into human putamen were estimated to be 0.28 M and 0.13 nmol/g/min respectively. The results indicate that the freezing procedure does not affect the uptake sites for these transmitters. The storage time before freezing is however of importance for theV max value. TheK m value for the uptake, on the other hand, seems to be rather resistant to storage time before freezing.  相似文献   

18.
A proteoglycan in which the glycosaminoglycans are predominantly chondroitin sulfate has been isolated from the soluble fraction of rat brain by ion exchange chromatography and gel filtration. Glycoprotein oligosaccharides are also present, and result in adsorption of the proteoglycan by Concanavalin A-Sepharose. The proteoglycan-glycoprotein complex eluted from the affinity column by alpha-methylglucoside floats near the top of a cesium chloride density gradient run under dissociative conditions (4 M guanidine), but after beta-elimination of the chondroitin sulfate polysaccharide chains from their low buoyant density glycoprotein complex they sediment to the bottom of the gradient. These results suggest that relatively few polysaccharide chains are covalently linked to a large protein core in the dissociated chondroitin sulfate proteoglycan "subunit" from brain, and that the proteoglycans are closely associated with soluble glycoproteins.  相似文献   

19.
Previously a distinct D1-like dopamine receptor (DAR) that selectively couples to phospholipase C/phosphatidylinositol (PLC/PI) was proposed. However, lack of a selective agonist has limited efforts aimed at characterizing this receptor. We characterized the in vitro and in vivo effects of SKF83959 in regulating PI metabolism. SKF83959 stimulates (EC50, 8 micro m) phosphatidylinositol 4,5-biphosphate hydrolysis in membranes of frontal cortex (FC) but not in membranes from PC12 cells expressing classical D1A DARs. Stimulation of FC PI metabolism was attenuated by the D1 antagonist, SCH23390, indicating that SKF83959 activates a D1-like DAR. The PI-linked DAR is located in hippocampus, cerebellum, striatum and FC. Most significantly, administration of SKF83959 induced accumulations of IP3 in striatum and hippocampus. In contrast to other D1 DAR agonists, SKF83959 did not increase cAMP production in brain or in D1A DAR-expressing PC12 cell membranes. However, SKF83959 inhibited cAMP elevation elicited by the D1A DAR agonist, SKF81297, indicating that the compound is an antagonist of the classical D1A DAR. Lastly, we demonstrated that SKF83959 enhances [35S]guanosine 5'-O-(3-thiotriphosphate) binding to membrane Galphaq and Galphai proteins, suggesting that PI stimulation is mediated by activation of these guanine nucleotide-binding regulatory proteins. Results indicate that SKF83959 is a selective agonist for the PI-linked D1-like DAR, providing a unique tool for investigating the functions of this brain D1 DAR subtype.  相似文献   

20.
Phenylethanolamine-N-methyltransferase (PNMT, EC 2.1.1.28) was partially purified from rat brain. Brain homogenates were subjected to ultracentrifugation, salt fractionation, and gel filtration on Sephadex G-100. To compare the rat brain PNMT with that of adrenals, the same procedure was carried out with rat adrenal homogenates. The brain enzyme was eluted from Sephadex as a single fraction with a molecular weight of 26,900, while the enzyme from adrenals under the same conditions appeared in two fractions with molecular weights of 38,700 and 108,500. The brain fraction separated on Sephadex G-100 was active on phenylethanolamine substrates and inactive on indoleamine and phenylethylamine substrates. Products of the enzyme reaction were identified by bidimensional thin-layer chromatography asN-methyl derivatives of the corresponding amines. Kinetic studies showed that the type of inhibition of PNMT from rat brain and rat adrenals by SK&F 7698 was the same as described for PNMT from rabbit adrenals. Also, when normetanephrine andS-adenosyl-l-methionine were used as substrates, the apparentK m values found with PNMT from rat adrenals and rat brain were similar.Preliminary reports were presented at XXV Convención Anual AsoVAC, Caracas, Venezuela, October 1975, and at XII Congreso Latinoamericano de Ciencias Fisiológicas, Bogotá, Colombia, November 1975.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号