首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of rare genomic marker systems suggest that Myzostomida are a subgroup of Annelida and phylogenomic analyses indicate an early divergence of this taxon within annelids. However, adult myzostomids show a highly specialized body plan, which lacks typical annelid features, such as external body annulation, coelomic cavities with metanephridia, and segmental ganglia of the nervous system. The putative loss of these features might be due to the parasitic/symbiotic lifestyle of myzostomids associated with echinoderms. In contrast, the larval anatomy and adult locomotory system resemble those of annelids. To clarify whether the myoanatomy of myzostomids reflects their relationship to annelids, we analyzed the distribution of f‐actin, a common component of muscle fibers, in specimens of Myzostoma cirriferum using phalloidin‐rhodamine labeling in conjunction with confocal laser‐scanning microscopy. Our data reveal that the musculature of the myzostomid body comprises an outer circular layer, an inner longitudinal layer, numerous dorsoventral muscles, and prominent muscles of the parapodial complex. These features correspond well with the common organization of the muscular system in Annelida. In contrast to other annelids, however, several elements of the muscular system in M. cirriferum, including the musculature of the body wall, and the parapodial flexor muscles, exhibit radial symmetry overlaying a bilateral body plan. These findings are in line with the annelid affinity of myzostomids and suggest that the apparent partial radial symmetry of M. cirriferum arose secondarily in this species. Based on our data, we provide a scenario on the rearrangements of muscle fibers that might have taken place in the lineage leading to this species. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The larval development of Myzostoma cirriferum is described by means of SEM, TEM, and cLSM. It is similar to that of other myzostomids and includes three stages: the protrochophore, the trochophore, and the metatrochophore. The protrochophore is a ball-shaped larva present in culture from 18-48 h after egg laying. It has no internal organs and its body is made of three cell types: covering cells and ciliated cells that are external and surrounded by a cuticle, and resting cells that fill the blastocoel. The trochophore is a pear-shaped larva that develops 20-72 h after egg laying; the body includes the same three cell types as the previous stage. The metatrochophore is a pear-shaped larva that develops between 40 h and 14 days and is characterized by the presence of two bundles of four chaetae. When fully developed, the metatrochophore has a digestive system (made of a pharynx, an esophagus, and a blind digestive pouch), two pairs of protonephridia, and a nervous system composed of a supraesophageal ganglion, circumesophageal connectives, and dorsal and ventral nerves. Metamorphosis generally occurs 7 days after egg laying. At that time, the metatrochophore loses its chaetae and becomes pleated ventrally. This ultrastructural analysis suggests that chaetae and the five ventral longitudinal nerve cords of M. cirriferum metatrochophores are homologous structures to those observed in some polychaete trochophores. Coupled with recent phylogenetic analyses, where the Myzostomida are placed outside the Annelida, homologies between myzostomid and polychaete larvae support the view that a trochophore appeared early during the spiralian evolution.  相似文献   

3.
Summary The fine structure of the integument of Myzostoma cirriferum is described with special attention to the integument sensory areas. Hypotheses about the function and a functional model of these are proposed. The integument consists of an external pseudostratified epithelium with cuticle (the epidermis) covering a parenchymo-muscular layer (the dermis). The dermis includes two types of cells: muscular fibers of the double obliquely striated type and parenchymal cells. Differences occur in the epidermis, which consists either of a large non-innervated myoepithelial area (viz. the regular epidermis). or of several rather localized sensory-secretory areas associated with discrete nerve proceses (viz. the sensory epidermis). The regular epidermis is made up of three types of cell: covering cells, ciliated cells and myoepithelial cells. The sensory epidermis shows small or marked structural variations from the regular epidermis. Small variations occur in the cirri, the buccal papilla, the body margin, the parapodia and the parapodial folds where nerve processes insinuate between epidermal cells. They are thought to be mechanoreceptor sites that could give information on the structural variations of the host's integument and participate in the recognition of individuals of the same species. The sensory epidermis differs markedly from the regular eidermis in the four pairs of lateral organs. Each lateral organ consists of a villous and ciliated dome-like central part, surrounded by a peripheral fold. The epidermis of the fold's inner part (viz. the part facing the central dome) is made up of secretory cells, while that of the fold's outer part is similar to the regular epidermis. The epidermis of the dome includes vacuolar cells, sensory cells and a different type of secretory cell. Lateral organs are presumed to be both chemoreceptors and mechanoreceptors. They could allow the myzostomids to recognize the host's integument and prevent them from shifting on the surrounding inhospitable substrate.  相似文献   

4.
Myzostoma cirriferum feeds by diverting food particles carried by the ambulacral grooves of its comatulid host Antedon bifida. When searching for food, the myzostome uses its protrusible introvert to fulfil two major functions: sensory perception and the capture of food particles. The digestive system is composed of four parts, viz. a pharynx, that is contained within the introvert, a stomach, a series of paired caeca and an intestine that lie in the myzostome's trunk. The pharynx is supplied with a thick muscle which, thanks to peristaltic movements, carries food particles from the mouth to the stomach. Both stomach and caecal cells are able to absorb dissolved nutriments and to store lipids, whereas intestinal cells are only capable of absorption. Due to the beating of their cilia, stomach cells also carry food particles into the caecal lumen, where they are subjected to endocytosis and intracellular digestion by caecal cells. Undigested food fragments eventually gather in a very large, apical vacuole, and the cell apices containing vacuoles are eliminated into the caecal lumen by an apocrinal process. Detached cell apices reach the stomach, where they are embedded in a matrix, together forming a spindle-shaped faecal mass that is expelled through the postero-ventral anus. The observed digestive process—entailing the regular elimination of the apical part of the caecal digestive cells—appears to be unique among the Spiralia.  相似文献   

5.
6.
Summary The spermatophore ofMyzostoma cirriferum is a white V-shaped structure up to ca. 500 m long. It is formed by a translucent matrix which includes numerous cysts of two types that are very close together and tend to form interlacing twists. According to their contents, three spermatophoral regions can be distinguished: the body with the horns, the foot and the basal disc. The body-horns region forms the upper part of the spermatophore and extends over ca. 400 m. This region includes mature spermiocysts which are formed by one cyst cell each including one to three groups of rolled up spermatozoons. Features of these cyst cells are their great length (up to 25 m), their euchromatic nuclei each provided with a large nucleolus, their numerous mitochondria and osmiophilic vesicles included in the cytoplasm as well as cytoplasmic remnants of the residual bodies of the spermatids. Spermatozoons appear to be well adapted to the intradermic penetration occurring in this species in that all of them possess nuclei provided with dense nuclear grains, a hairpin-bent flagellum and a microtubular palissade. The spermatophore foot is located just below the body and extends over ca. 90 m. It contains exclusively spermiocysts which include one to three abortive germinal cells. They differ also from the previous cysts by their smaller length (ca. 6–10 m) and their more heterochromatic nuclei. The basal disc is the lower part of the spermatophore. It extends over ca. 10 m and contains electron-dense vesicles in its upper part and vesicles with fibrillar material in its lower part. When mature myzostomids contact each other, a spermatophore is expulsed from one seminal vesicle of the donor myzostomid to the integument of the receiver myzostomid. The vesicles with fibrillar content are the first in contact with the cuticle of the receiver myzostomid. The material they include is supposed to have a histolytic action and to be responsible for the lysis of the cuticle and epidermal cells thus providing a passage for the spermatophore contents. Afterwards, cysts move as a result of the spermatozoons' beating and pass through the receiver's integument. At the time of penetration, cytoplasmic membranes of the cyst cells merge together forming an enormous syncytium extending into the whole receiver's body. This syncytium surrounds the spermatozoons and the abortive germinal cells. The whole process of intradermic penetration (i.e. from the fixation of the spermatophore to its reduction to an empty matrix) lasts from 1–5 h.  相似文献   

7.
The nervous systems of juvenile and adult Myzostoma cirriferum Leuckart, 1836, were stained with antisera against 5-HT (5-hydroxytryptamine, serotonin), FMRFamide, and acetylated alpha-tubulin in combination with the indirect fluorescence technique and analyzed by confocal laser scanning microscopy. The central nervous system consists of two small cerebral ganglia, connected by a dorsal commissure, a ventral nerve mass, and a pair of long circumesophageal connectives joining the former to the latter. The two neuropil cords within the ventral nerve mass curve outward and are joined to one another anteriorly and posteriorly. They are connected by 12 commissures, forming a ladder-like system. A single median nerve runs along the midventral axis. In addition to the circumesophageal connectives, 11 peripheral nerves arise from each main cord. The first innervates the anterior body region. The others form five groups of two nerves each, the first and thicker nerve of which is the parapodial nerve, innervating the parapodium and two corresponding cirri. Except for those in the most posterior group, the second nerves innervate the lateral organs and the body periphery. Serotonergic perikarya are arranged in six more or less distinct clusters, the first lying in front of and the other five between the main nerve cords. The distribution pattern of the FMRFamidergic perikarya is less clear and the somata lie between and outside the cords. One pair of dorsolateral longitudinal nerves was visualized by tubulin staining. Peripheral nerves and the commissures, in particular, demonstrate a segmental organization of the nervous system of M. cirriferum. Furthermore, their arrangement indicates that the body consists of six segments, the first of which is identifiable only by the first pair of peripheral nerves, the first two commissures, and the anteriormost ventral ganglion. The nervous system M. cirriferum thus exhibits several structures also found in the basic plan of the polychaete nervous system.  相似文献   

8.
Abstract. A retractable head region somewhat resembling the introvert of sipunculans is a characteristic feature of members of the annelid taxon Fauveliopsidae. The morphology of fauvelopsids is not well known, and additional data might help to resolve their relationships with other annelids and sipunculans. Ultrastructural investigations of the anterior end of adults of Fauveliopsis cf. adriatica revealed peculiar brain and sensory structures. From the neuropil of the brain, two pairs of lobes mainly composed of neuronal somata extend posteriorly into the peristomium and the following segment. The nuchal organs are embedded in the median pair of lobes, as are additional photoreceptor‐like sensory structures, the ocellar tubes, which are found at the bases of epidermal follicles that extend deeply into the brain. The retractor muscles of the prostomium are attached to the apices of these follicles, which are lined by tendon and supportive cells. The lumen of each follicle is completely filled with cuticular material that forms a rod. Monociliary sensory cells are present all along the length of each follicle; their cilia extend into the cuticle, and are oriented parallel to the longitudinal axis of the tube. Basally, each follicle forms an ovoid extension that is devoid of cuticular material and densely filled with numerous sensory processes—microvilli and cilia—of bipolar sensory cells. The terminal end of the 40‐μm‐deep follicle is formed by two conspicuous cells that contain numerous densely packed vesicles that resemble pigment granules. The ocellar tubes of fauveliopsids are strikingly similar to the ocular tubes of sipunculids. These similarities may reflect common ancestry or may represent convergent evolution; both alternatives are partially supported by previous morphological and molecular studies.  相似文献   

9.
The seedling development of an undescribed Malaccotristicha species was observed by using seedling culture and microtomy to infer the evolution of body plan with a focus on the root, which is a developmentally leading organ of most Podostemaceae. The young seedling has a small primary shoot apical meristem and a primary root apical meristem. The shoot meristem develops into a plumular ramulus, and the root meristem, into a cylindrical radicle with no root cap. The radicle transforms to a dorsiventral, flattened, capped primary root. An adventitious root develops endogenously on the lateral side of the hypocotyl and is similar to the primary root. This is a new pattern in Podostemaceae. Comparison of this and described patterns of Podostemaceae (and the sister-group Hypericaceae) suggests that the radicle was lost in the early evolution of Podostemaceae and instead adventitious roots replaced it as a leading organ.  相似文献   

10.
A large, combined phylogenetic analysis (including morphological and molecular data from 18S rDNA, 16S rDNA and cytochrome c oxidase subunit I), with the highest number of species and genera of Syllidae studied to date (213 terminals), is examined. The data were explored with different parameters and optimality criteria (parsimony, likelihood, and bayesian inference). The monophyly of Syllidae and most of the traditional subfamilies is supported. The subfamily Eusyllinae is polyphyletic, as currently delineated, but it is herein reorganized and its diagnosis modified to be a valid group. Additional well supported clades arise. The phylogenetic relationships of the well known and established genera, as well as several enigmatic genera (e.g. Anguillosyllis, Paraopisthosyllis and Parahaplosyllis), the position of which in syllid taxonomy was uncertain or dubious to date, are clarified. The results corroborate previous hypotheses about the evolution of the reproductive and brooding modes. Within Syllinae, the nature of the stolon is phylogenetically informative. The classification of the whole family is revised and discussed on the basis of this phylogenetic hypothesis. © The Willi Hennig Society 2011.  相似文献   

11.
12.
The evolution of photoreceptor cells and eyes in Metazoa is far from being resolved, although recent developmental and structural studies have provided strong evidence for a common origin of photoreceptor cells and existence of sister cell types already in early metazoans. These sister cell types are ciliary and rhabdomeric photoreceptor cells, depending on which part of each cell is involved in photoreception proper. However, a crucial point in eye evolution is how the enormous structural diversity of photoreceptor cells and visual systems developed, given the general molecular conservation of the photoreceptor cells. One example of this diversity can be observed in Annelida. Within the polychaetes the errant forms, taxon Aciculata, constitute the only group possessing true multicellular eyes in the adult stage. Thus far these organs have been investigated only in taxa of Phyllodocida, a subgroup of Aciculata. Data on Eunicida and Amphinomida as well as certain phyllodocidan taxa had been lacking. The ultrastructure of these adult eyes was investigated in various species of errant polychaetes, belonging to Amphinomidae, Eunicidae and Hesionidae, to elucidate whether they provide any phylogenetic clues regarding either the evolution of visual systems in Annelida or lophotrochozoan phylogeny in general. These eyes are composed of numerous supportive pigment cells and rhabdomeric photoreceptor cells and sometimes additional cell types. As a rule the pigment and rhabdomeric cell types form a continuous epithelium in which the two types intermingle. Presence of granules with shading pigment in sensory cells is a common feature but is apparently restricted to a taxon comprising Phyllodocida and Eunicida s. str. Very likely a lens-like structure does not belong to the ground pattern of annelid eyes, despite its presence in Phyllodocida. These lens-like structures are formed by secretions or cellular processes of the pigment cells. In many species the eye cup communicates with the exterior via a small cuticularized canal. This canal is interpreted as a rudiment due to the mode of formation in the epidermis. With respect to current phylogenetic hypotheses, these multicellular eyes have either been developed in the stem species of a taxon Aciculata nested within the polychaetes or have been evolved in the stem lineage of Annelida. Similarities to gastropod eyes are interpreted as convergent and not as indication of common origin. Except for the photoreceptor cells proper, the structure of the adult eyes in polychaetes most likely does not help to resolve lophotrochozoan phylogeny.  相似文献   

13.
Annelids provide suitable models for studying regeneration. By now, comprehensive information is restricted to only a few taxa. For many other annelids, comparative data are scarce or even missing. Here, we describe the regeneration of a member of the Cirratulus cirratus species complex. Using phalloidin‐labeling and antibody‐stainings combined with subsequent confocal laser scanning microscopy, we provide data about the organization of body wall musculature and nervous system of intact specimens, as well as about anteriorly regenerating specimens. Our analyses show that C. cf. cirratus exhibits a prominent longitudinal muscle layer forming a dorsal muscle plate, two ventral muscle strands and a ventral‐median muscle fiber. The circular musculature forms closed rings which are interrupted in the area of parapodia. The nervous system of C. cf. cirratus shows a typical rope‐ladder like arrangement and the circumesophageal connectives exhibit two separate roots leading to the brain. During regeneration, the nervous system redevelops remarkably earlier than the musculature, first constituting a tripartite loop‐like structure which later become the circumesophageal connectives. Regeneration of longitudinal musculature starts with diffuse ingrowth and subsequent structuring into the blastema. In contrast, circular musculature develops independently inside the blastema. Our findings constitute the first analysis of regeneration for a member of the Cirratuliformia on a structural level. Summarizing the regeneration process in C. cf. cirratus, five main phases can be subdivided: 1) wound closure, 2) blastema formation, 3) blastema differentiation, 4) resegmentation, and 5) growth, respectively elongation. Additionally, the described tripartite loop‐like structure of the regenerating nervous system has not been reported for any other annelid taxon. In contrast, the regeneration of circular and longitudinal musculature originating from different groups of cells seems to be a general pattern in annelid regeneration. J. Morphol. 275:1418–1430, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
Most myzostomids are ectocommensals of crinoids on which they move freely. Their locomotion is ensured by five pairs of parapodia located laterally below their trunk. Each parapodium in Myzostoma cirriferum is a conical structure that includes a hook-like chaeta, replacement chaetae and an aciculum. Structure and ultrastructure of the myzostomid chaetae are similar to those of polychaetes: they are formed by a chaetoblast, which gives rise to microvilli where chaetal material is assembled on the outer surface. Myzostoma cirriferum walks on its host. It moves the anterior part, the posterior part or the lateral parts forwards but is able to rotate of 180° on itself. Its locomotion entirely depends on parapodial motions and not on trunk movements. Three pairs of muscles are involved in parapodial motions: parapodium flexor and parapodium extensor, aciculum protractor and aciculum retractor, and hook protractor with conjunctor. A functional model is proposed for explaining the global motion of a parapodium in M. cirriferum that may be extended to all ectocommensal myzostomids.  相似文献   

17.
Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well-supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula-clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation.  相似文献   

18.
Jacob Jelsing 《Zoomorphology》2002,121(4):213-220
The nuchal organs of Spio cf. filicornis from northern Europe have been studied by scanning and transmission electron microscopy. Spio cf. filicornis is the first species in which metameric nuchal organs are described. The nuchal organs consist of a distinct cephalic nuchal complex followed by metameric structures for a variable number of chaetigers. Their microanatomy corresponds to the general structural plan of nuchal organs: these are ciliated supporting cells and bipolar sensory cells with sensory cilia traversing an olfactory chamber. The organs are overlaid by a secondary paving-stone-like cover and innervated by longitudinally elongated paired nuchal nerves. The findings clearly favour the hypothesis that the paired metameric ciliated structures found in some Spionidae are in fact homologous with the prostomial nuchal organs characteristic of Polychaeta.  相似文献   

19.
The present study deals with the spermatozoa and spermiogenesis of Liphistius cf. phuketensis, a representative of the most primitive and enigmatic spider group Mesothelae. The general organization of the spermatozoa is very similar to the condition known from Amblypygi supporting a sister-group relationship between Araneae and Amblypygi. Besides plesiomorphic characters such as, e.g., an elongated and corkscrew shaped nucleus, the sperm cells are characterized by several apomorphic characters, e.g., the giant body and conspicuous membranous areas which are formed at the end of spermiogenesis. As the transfer form, coenospermia are formed at the end of spermiogenesis, which strongly supports the idea that this type of sperm aggregation is the primitive transfer form within spiders. A very remarkable character of the spermatozoa of some groups of arachnids is the coiling of the main cell organelles at the end of spermiogenesis. Previously, the Mesothelae were believed to be the only spider group which does not show a complete coiling of the main cell organelles. With the present study the first evidence of a complete coiling of spermatozoa within this primitive spider group could be documented, indicating that this character is part of the ground pattern of spider spermatozoa. Consequently, the incomplete coiling seems to be a synapomorphy of certain species of Mesothelae, which sheds new light on the discussion of the phylogenetic relationships of this group.  相似文献   

20.
The phylogeny of 31 autolytine taxa (Syllidae, Polychaeta, and Annelida) was estimated based on 16S rDNA and 18S rDNA sequences. Outgroups included 12 non-autolytine syllids and four other annelids from related groups. The phylogeny was used to trace the evolution of the various reproductive strategies (i.e., epigamy, anterior and posterior scissiparity, and gemmiparity) within the group, and it will also serve as a basis for a forthcoming revision of autolytine taxonomy. The two genes were analysed both separately and in combination using parsimony, maximum likelihood, and Bayesian inference. Regardless of method used the combined analysis supported a division of Autolytinae into three major clades: one with epigamous Autolytus; a second comprising Autolytus and Myrianida with posterior scissiparity and gemmiparity; and a third containing Proceraea, Procerastea, and Virchowia with anterior scissiparity. The relationship between these three groups is uncertain. Ancestral reproductive states were reconstructed with parsimony and maximum likelihood, and the results unequivocally support epigamy as the plesiomorphic reproductive mode in Syllidae, and that schizogamy in Syllinae and Autolytinae are separate events. The evolution of reproductive traits is ambiguous within Autolytinae, and either of the different reproductive modes could represent the ancestral state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号